Comparison of Bayesian approaches for developing prediction models in rare disease: application to the identification of patients with Maturity-Onset Diabetes of the Young

Author:

Cardoso PedroORCID,McDonald Timothy J.ORCID,Patel Kashyap A.ORCID,Pearson Ewan R.ORCID,Hattersley Andrew T.ORCID,Shields Beverley M.ORCID,McKinley Trevelyan J.ORCID

Abstract

Abstract Background Clinical prediction models can help identify high-risk patients and facilitate timely interventions. However, developing such models for rare diseases presents challenges due to the scarcity of affected patients for developing and calibrating models. Methods that pool information from multiple sources can help with these challenges. Methods We compared three approaches for developing clinical prediction models for population screening based on an example of discriminating a rare form of diabetes (Maturity-Onset Diabetes of the Young - MODY) in insulin-treated patients from the more common Type 1 diabetes (T1D). Two datasets were used: a case-control dataset (278 T1D, 177 MODY) and a population-representative dataset (1418 patients, 96 MODY tested with biomarker testing, 7 MODY positive). To build a population-level prediction model, we compared three methods for recalibrating models developed in case-control data. These were prevalence adjustment (“offset”), shrinkage recalibration in the population-level dataset (“recalibration”), and a refitting of the model to the population-level dataset (“re-estimation”). We then developed a Bayesian hierarchical mixture model combining shrinkage recalibration with additional informative biomarker information only available in the population-representative dataset. We developed a method for dealing with missing biomarker and outcome information using prior information from the literature and other data sources to ensure the clinical validity of predictions for certain biomarker combinations. Results The offset, re-estimation, and recalibration methods showed good calibration in the population-representative dataset. The offset and recalibration methods displayed the lowest predictive uncertainty due to borrowing information from the fitted case-control model. We demonstrate the potential of a mixture model for incorporating informative biomarkers, which significantly enhanced the model’s predictive accuracy, reduced uncertainty, and showed higher stability in all ranges of predictive outcome probabilities. Conclusion We have compared several approaches that could be used to develop prediction models for rare diseases. Our findings highlight the recalibration mixture model as the optimal strategy if a population-level dataset is available. This approach offers the flexibility to incorporate additional predictors and informed prior probabilities, contributing to enhanced prediction accuracy for rare diseases. It also allows predictions without these additional tests, providing additional information on whether a patient should undergo further biomarker testing before genetic testing.

Funder

Research England

Wellcome Trust

Diabetes UK

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3