Multivariate network meta-analysis incorporating class effects

Author:

Owen Rhiannon K.ORCID,Bujkiewicz Sylwia,Tincello Douglas G.,Abrams Keith R.

Abstract

Abstract Background Network meta-analysis synthesises data from a number of clinical trials in order to assess the comparative efficacy of multiple healthcare interventions in similar patient populations. In situations where clinical trial data are heterogeneously reported i.e. data are missing for one or more outcomes of interest, synthesising such data can lead to disconnected networks of evidence, increased uncertainty, and potentially biased estimates which can have severe implications for decision-making. To overcome this issue, strength can be borrowed between outcomes of interest in multivariate network meta-analyses. Furthermore, in situations where there are relatively few trials informing each treatment comparison, there is a potential issue with the sparsity of data in the treatment networks, which can lead to substantial parameter uncertainty. A multivariate network meta-analysis approach can be further extended to borrow strength between interventions of the same class using hierarchical models. Methods We extend the trivariate network meta-analysis model to incorporate the exchangeability between treatment effects belonging to the same class of intervention to increase precision in treatment effect estimates. We further incorporate a missing data framework to estimate uncertainty in trials that did not report measures of variability in order to maximise the use of all available information for healthcare decision-making. The methods are applied to a motivating dataset in overactive bladder syndrome. The outcomes of interest were mean change from baseline in incontinence, voiding and urgency episodes. All models were fitted using Bayesian Markov Chain Monte Carlo (MCMC) methods in WinBUGS. Results All models (univariate, multivariate, and multivariate models incorporating class effects) produced similar point estimates for all treatment effects. Incorporating class effects in multivariate models often increased precision in treatment effect estimates. Conclusions Multivariate network meta-analysis incorporating class effects allowed for the comparison of all interventions across all outcome measures to ameliorate the potential impact of outcome reporting bias, and further borrowed strength between interventions belonging to the same class of treatment to increase the precision in treatment effect estimates for healthcare policy and decision-making.

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3