Capturing the variety of clinical pathways in patients with schizophrenic disorders through state sequences analysis

Author:

Savaré LauraORCID,Ieva Francesca,Corrao Giovanni,Lora Antonio

Abstract

Abstract Background Care pathways are increasingly being used to enhance the quality of care and optimize the use of resources for health care. Nevertheless, recommendations regarding the sequence of care are mostly based on consensus-based decisions as there is a lack of evidence on effective treatment sequences. In a real-world setting, classical statistical tools were insufficient to consider a phenomenon with such high variability adequately and have to be integrated with novel data mining techniques suitable for identifying patterns in complex data structures. Data-driven techniques can potentially support empirically identifying effective care sequences by extracting them from data collected routinely. The purpose of this study is to perform a state sequence analysis (SSA) to identify different patterns of treatment and to asses whether sequence analysis may be a useful tool for profiling patients according to the treatment pattern. Methods The clinical application that motivated the study of this method concerns the mental health field. In fact, the care pathways of patients affected by severe mental disorders often do not correspond to the standards required by the guidelines in this field. In particular, we analyzed patients with schizophrenic disorders (i.e., schizophrenia, schizotypal or delusional disorders) using administrative data from 2015 to 2018 from Lombardy Region. This methodology considers the patient’s therapeutic path as a conceptual unit, composed of a succession of different states, and we show how SSA can be used to describe longitudinal patient status. Results We define the states to be the weekly coverage of different treatments (psychiatric visits, psychosocial interventions, and anti-psychotic drugs), and we use the longest common subsequences (dis)similarity measure to compare and cluster the sequences. We obtained three different clusters with very different patterns of treatments. Conclusions This kind of information, such as common patterns of care that allowed us to risk profile patients, can provide health policymakers an opportunity to plan optimum and individualized patient care by allocating appropriate resources, analyzing trends in the health status of a population, and finding the risk factors that can be leveraged to prevent the decline of mental health status at the population level.

Funder

Ministero della Salute

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3