Abstract
Abstract
Background
Attrition due to death and non-attendance are common sources of bias in studies of age-related diseases. A simulation study is presented to compare two methods for estimating the survivor average causal effect (SACE) of a binary exposure (sex-specific dietary iron intake) on a binary outcome (age-related macular degeneration, AMD) in this setting.
Methods
A dataset of 10,000 participants was simulated 1200 times under each scenario with outcome data missing dependent on measured and unmeasured covariates and survival. Scenarios differed by the magnitude and direction of effect of an unmeasured confounder on both survival and the outcome, and whether participants who died following a protective exposure would also die if they had not received the exposure (validity of the monotonicity assumption). The performance of a marginal structural model (MSM, weighting for exposure, survival and missing data) was compared to a sensitivity approach for estimating the SACE. As an illustrative example, the SACE of iron intake on AMD was estimated using data from 39,918 participants of the Melbourne Collaborative Cohort Study.
Results
The MSM approach tended to underestimate the true magnitude of effect when the unmeasured confounder had opposing directions of effect on survival and the outcome. Overestimation was observed when the unmeasured confounder had the same direction of effect on survival and the outcome. Violation of the monotonicity assumption did not increase bias. The estimates were similar between the MSM approach and the sensitivity approach assessed at the sensitivity parameter of 1 (assuming no survival bias). In the illustrative example, high iron intake was found to be protective of AMD (adjusted OR 0.57, 95% CI 0.40–0.82) using complete case analysis via traditional logistic regression. The adjusted SACE odds ratio did not differ substantially from the complete case estimate, ranging from 0.54 to 0.58 for each of the SACE methods.
Conclusions
On average, MSMs with weighting for exposure, missing data and survival produced biased estimates of the SACE in the presence of an unmeasured survival-outcome confounder. The direction and magnitude of effect of unmeasured survival-outcome confounders should be considered when assessing exposure-outcome associations in the presence of attrition due to death.
Funder
VicHealth
Cancer Council Victoria
National Health and Medical Research Council
The Ophthalmic Research Institute of Australia
American Health Assistance Foundation
Jack Brockhoff Foundation
John T. Reid Charitable Trusts
Australian Government
Victorian Centre for Biostatistics
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献