Accommodating heterogeneous missing data patterns for prostate cancer risk prediction

Author:

Neumair Matthias,Kattan Michael W.,Freedland Stephen J.,Haese Alexander,Guerrios-Rivera Lourdes,De Hoedt Amanda M.,Liss Michael A.,Leach Robin J.,Boorjian Stephen A.,Cooperberg Matthew R.,Poyet Cedric,Saba Karim,Herkommer Kathleen,Meissner Valentin H.,Vickers Andrew J.,Ankerst Donna P.

Abstract

Abstract Background We compared six commonly used logistic regression methods for accommodating missing risk factor data from multiple heterogeneous cohorts, in which some cohorts do not collect some risk factors at all, and developed an online risk prediction tool that accommodates missing risk factors from the end-user. Methods Ten North American and European cohorts from the Prostate Biopsy Collaborative Group (PBCG) were used for fitting a risk prediction tool for clinically significant prostate cancer, defined as Gleason grade group ≥ 2 on standard TRUS prostate biopsy. One large European PBCG cohort was withheld for external validation, where calibration-in-the-large (CIL), calibration curves, and area-underneath-the-receiver-operating characteristic curve (AUC) were evaluated. Ten-fold leave-one-cohort-internal validation further validated the optimal missing data approach. Results Among 12,703 biopsies from 10 training cohorts, 3,597 (28%) had clinically significant prostate cancer, compared to 1,757 of 5,540 (32%) in the external validation cohort. In external validation, the available cases method that pooled individual patient data containing all risk factors input by an end-user had best CIL, under-predicting risks as percentages by 2.9% on average, and obtained an AUC of 75.7%. Imputation had the worst CIL (-13.3%). The available cases method was further validated as optimal in internal cross-validation and thus used for development of an online risk tool. For end-users of the risk tool, two risk factors were mandatory: serum prostate-specific antigen (PSA) and age, and ten were optional: digital rectal exam, prostate volume, prior negative biopsy, 5-alpha-reductase-inhibitor use, prior PSA screen, African ancestry, Hispanic ethnicity, first-degree prostate-, breast-, and second-degree prostate-cancer family history. Conclusion Developers of clinical risk prediction tools should optimize use of available data and sources even in the presence of high amounts of missing data and offer options for users with missing risk factors.

Funder

US National Institutes of Health

Technische Universität München

Publisher

Springer Science and Business Media LLC

Subject

Health Informatics,Epidemiology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3