Pharmacokinetic parameter driven outcomes model predicts a reduction in bleeding events associated with BAY 81–8973 versus antihemophilic factor (recombinant) plasma/albumin-free method in a Chinese healthcare setting
-
Published:2022-08-05
Issue:1
Volume:22
Page:
-
ISSN:1471-2288
-
Container-title:BMC Medical Research Methodology
-
language:en
-
Short-container-title:BMC Med Res Methodol
Author:
Chen Rong,Gultyaev Dmitry,Lister Johanna,Han Rong,Hu Nan,Malacan Jean,Solms Alexander,Vashi Parth,O’Hara Jamie,Hu Shanlian
Abstract
Abstract
Background
Long-term prophylactic therapy is considered the standard of care for hemophilia A patients. This study models the long-term clinical and cost outcomes of two factor VIII (FVIII) products using a pharmacokinetic (PK) simulation model in a Chinese population.
Methods
Head-to-head PK profile data of BAY 81–8973 (KOVALTRY®) and antihemophilic factor (recombinant) plasma/albumin-free method (rAHF-PFM, ADVATE®) were applied to a two-state (alive and dead) Markov model to simulate blood FVIII concentrations at a steady state in prophylactically-treated patients with hemophilia A. Worsening of the Pettersson score was simulated and decline was associated with the probability of having orthopaedic surgery. The only difference between the compounds was FVIII concentration at a given time; each subject was treated with 25 IU/kg every 3 days. The model used a lifetime horizon, with cycle lengths of 1 year.
Results
Cumulative bleeding events, joint bleeding events, and major bleeding events were reduced by 19.3% for BAY 81–8973 compared to rAHF-PFM. Hospitalizations and hospitalization days were also reduced by 19.3% for BAY 81–8973 compared to rAHF-PFM. BAY 81–8973 resulted in both cost savings and a gain in quality adjusted life years (QALYs) compared to rAHF-PFM.
Conclusion
Based on modeled head-to-head comparisons, differences in PK-properties between BAY 81–8973 and rAHF-PFM result in a reduced number of bleeding events, leading to reduced costs and increased quality of life for BAY 81–8973. These results should be used to inform clinical practice in China when caring for patients with severe hemophilia A.
Funder
Bayer Consumer Health
Publisher
Springer Science and Business Media LLC
Subject
Health Informatics,Epidemiology
Reference32 articles.
1. Qu Y, Nie X, Yang Z, Yin H, Pang Y, Dong P, et al. The prevalence of hemophilia in mainland China: a systematic review and meta-analysis. Southeast Asian J Trop Med Public Health. 2014;45(2):455–66.
2. [Consensus of Chinese expert on the diagnosis and treatment of hemophilia (version 2017)]. Zhonghua Xue Ye Xue Za Zhi. 2017;38(5):364–70.
3. Liu S, Zhou RF, Jin ZB, Wu M, Zhang PY. Age-related severity and distribution of haemophilic arthropathy of the knee, ankle and elbow among Chinese patients with haemophilia. Haemophilia. 2020;26(1):129–35.
4. Srivastava A, Santagostino E, Dougall A, Kitchen S, Sutherland M, Pipe SW, et al. WFH Guidelines for the Management of Hemophilia, 3rd edition. Haemophilia. 2020;26(Suppl 6):1–158.
5. Iorio A, Marchesini E, Marcucci M, Stobart K, Chan AK. Clotting factor concentrates given to prevent bleeding and bleeding-related complications in people with hemophilia A or B. Cochrane Database Syst Rev. 2011;9:Cd003429.