Evolution through segmental duplications and losses: a Super-Reconciliation approach

Author:

Delabre Mattéo,El-Mabrouk Nadia,Huber Katharina T.,Lafond Manuel,Moulton Vincent,Noutahi Emmanuel,Castellanos Miguel Sautie

Abstract

AbstractThe classical gene and species tree reconciliation, used to infer the history of gene gain and loss explaining the evolution of gene families, assumes an independent evolution for each family. While this assumption is reasonable for genes that are far apart in the genome, it is not appropriate for genes grouped into syntenic blocks, which are more plausibly the result of a concerted evolution. Here, we introduce the Super-Reconciliation problem which consists in inferring a history of segmental duplication and loss events (involving a set of neighboring genes) leading to a set of present-day syntenies from a single ancestral one. In other words, we extend the traditional Duplication-Loss reconciliation problem of a single gene tree, to a set of trees, accounting for segmental duplications and losses. Existency of a Super-Reconciliation depends on individual gene tree consistency. In addition, ignoring rearrangements implies that existency also depends on gene order consistency. We first show that the problem of reconstructing a most parsimonious Super-Reconciliation, if any, is NP-hard and give an exact exponential-time algorithm to solve it. Alternatively, we show that accounting for rearrangements in the evolutionary model, but still only minimizing segmental duplication and loss events, leads to an exact polynomial-time algorithm. We finally assess time efficiency of the former exponential time algorithm for the Duplication-Loss model on simulated datasets, and give a proof of concept on the opioid receptor genes.

Funder

Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3