Non-parametric correction of estimated gene trees using TRACTION

Author:

Christensen SarahORCID,Molloy Erin K.,Vachaspati Pranjal,Yammanuru Ananya,Warnow TandyORCID

Abstract

Abstract Motivation Estimated gene trees are often inaccurate, due to insufficient phylogenetic signal in the single gene alignment, among other causes. Gene tree correction aims to improve the accuracy of an estimated gene tree by using computational techniques along with auxiliary information, such as a reference species tree or sequencing data. However, gene trees and species trees can differ as a result of gene duplication and loss (GDL), incomplete lineage sorting (ILS), and other biological processes. Thus gene tree correction methods need to take estimation error as well as gene tree heterogeneity into account. Many prior gene tree correction methods have been developed for the case where GDL is present. Results Here, we study the problem of gene tree correction where gene tree heterogeneity is instead due to ILS and/or HGT. We introduce TRACTION, a simple polynomial time method that provably finds an optimal solution to the RF-optimal tree refinement and completion (RF-OTRC) Problem, which seeks a refinement and completion of a singly-labeled gene tree with respect to a given singly-labeled species tree so as to minimize the Robinson−Foulds (RF) distance. Our extensive simulation study on 68,000 estimated gene trees shows that TRACTION matches or improves on the accuracy of well-established methods from the GDL literature when HGT and ILS are both present, and ties for best under the ILS-only conditions. Furthermore, TRACTION ties for fastest on these datasets. We also show that a naive generalization of the RF-OTRC problem to multi-labeled trees is possible, but can produce misleading results where gene tree heterogeneity is due to GDL.

Funder

National Science Foundation

Ira and Debra Cohen Fellowship

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3