Global exact optimisations for chloroplast structural haplotype scaffolding

Author:

Epain Victor,Andonov Rumen

Abstract

Abstract Background Scaffolding is an intermediate stage of fragment assembly. It consists in orienting and ordering the contigs obtained by the assembly of the sequencing reads. In the general case, the problem has been largely studied with the use of distances data between the contigs. Here we focus on a dedicated scaffolding for the chloroplast genomes. As these genomes are small, circular and with few specific repeats, numerous approaches have been proposed to assemble them. However, their specificities have not been sufficiently exploited. Results We give a new formulation for the scaffolding in the case of chloroplast genomes as a discrete optimisation problem, that we prove the decision version to be $$\mathcal{NP}$$ NP -Complete. We take advantage of the knowledge of chloroplast genomes and succeed in expressing the relationships between a few specific genomic repeats in mathematical constraints. Our approach is independent of the distances and adopts a genomic regions view, with the priority on scaffolding the repeats first. In this way, we encode the structural haplotype issue in order to retrieve several genome forms that coexist in the same chloroplast cell. To solve exactly the optimisation problem, we develop an integer linear program that we implement in Python3 package khloraascaf. We test it on synthetic data to investigate its performance behaviour and its robustness against several chosen difficulties. Conclusions We succeed to model biological knowledge on genomic structures to scaffold chloroplast genomes. Our results suggest that modelling genomic regions is sufficient for scaffolding repeats and is suitable for finding several solutions corresponding to several genome forms.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3