Super short operations on both gene order and intergenic sizes

Author:

Oliveira Andre R.ORCID,Jean GéraldineORCID,Fertin GuillaumeORCID,Dias UlissesORCID,Dias ZanoniORCID

Abstract

Abstract Background The evolutionary distance between two genomes can be estimated by computing a minimum length sequence of operations, called genome rearrangements, that transform one genome into another. Usually, a genome is modeled as an ordered sequence of genes, and most of the studies in the genome rearrangement literature consist in shaping biological scenarios into mathematical models. For instance, allowing different genome rearrangements operations at the same time, adding constraints to these rearrangements (e.g., each rearrangement can affect at most a given number of genes), considering that a rearrangement implies a cost depending on its length rather than a unit cost, etc. Most of the works, however, have overlooked some important features inside genomes, such as the presence of sequences of nucleotides between genes, called intergenic regions. Results and conclusions In this work, we investigate the problem of computing the distance between two genomes, taking into account both gene order and intergenic sizes. The genome rearrangement operations we consider here are constrained types of reversals and transpositions, called super short reversals (SSRs) and super short transpositions (SSTs), which affect up to two (consecutive) genes. We denote by super short operations (SSOs) any SSR or SST. We show 3-approximation algorithms when the orientation of the genes is not considered when we allow SSRs, SSTs, or SSOs, and 5-approximation algorithms when considering the orientation for either SSRs or SSOs. We also show that these algorithms improve their approximation factors when the input permutation has a higher number of inversions, where the approximation factor decreases from 3 to either 2 or 1.5, and from 5 to either 3 or 2.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Rearrangement Distance Problems: An updated survey;ACM Computing Surveys;2024-04-26

2. Rearrangement Events on Circular Genomes;Bulletin of Mathematical Biology;2023-09-25

3. A new algebraic approach to genome rearrangement models;Journal of Mathematical Biology;2022-05

4. Genome Rearrangement Distance with a Flexible Intergenic Regions Aspect;IEEE/ACM Transactions on Computational Biology and Bioinformatics;2022

5. An improved approximation algorithm for the reversal and transposition distance considering gene order and intergenic sizes;Algorithms for Molecular Biology;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3