On the complexity of non-binary tree reconciliation with endosymbiotic gene transfer

Author:

Gascon Mathieu,El-Mabrouk Nadia

Abstract

AbstractReconciling a non-binary gene tree with a binary species tree can be done efficiently in the absence of horizontal gene transfers, but becomes NP-hard in the presence of gene transfers. Here, we focus on the special case of endosymbiotic gene transfers (EGT), i.e. transfers between the mitochondrial and nuclear genome of the same species. More precisely, given a multifurcated (non-binary) gene tree with leaves labeled 0 or 1 depending on whether the corresponding genes belong to the mitochondrial or nuclear genome of the corresponding species, we investigate the problem of inferring a most parsimonious Duplication, Loss and EGT (DLE) Reconciliation of any binary refinement of the tree. We present a general two-steps method: ignoring the 0–1 labeling of leaves, output a binary resolution minimizing the Duplication and Loss (DL) Reconciliation and then, for such resolution, assign a known number of 0s and 1s to the leaves in a way minimizing EGT events. While the first step corresponds to the well studied non-binary DL-Reconciliation problem, the complexity of the label assignment problem corresponding to the second step is unknown. We show that this problem is NP-complete, even when the tree is restricted to a single polytomy, and even if transfers can occur in only one direction. We present a general algorithm solving each polytomy separately, which is shown optimal for a unitary cost of operation, and a polynomial-time algorithm for solving a polytomy in the special case where genes are specific to a single genome (mitochondrial or nuclear) in all but one species. This work represents the first algorithmic study for reconciliation with endosymbiotic gene transfers in the case of a multifurcated gene tree.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3