Testing the agreement of trees with internal labels

Author:

Fernández-Baca DavidORCID,Liu Lei

Abstract

Abstract Background A semi-labeled tree is a tree where all leaves as well as, possibly, some internal nodes are labeled with taxa. Semi-labeled trees encompass ordinary phylogenetic trees and taxonomies. Suppose we are given a collection $${\mathcal {P}}= \{{\mathcal {T}}_1, {\mathcal {T}}_2, \ldots , {\mathcal {T}}_k\}$$ P = { T 1 , T 2 , , T k } of semi-labeled trees, called input trees, over partially overlapping sets of taxa. The agreement problem asks whether there exists a tree $${\mathcal {T}}$$ T , called an agreement tree, whose taxon set is the union of the taxon sets of the input trees such that the restriction of $${\mathcal {T}}$$ T to the taxon set of $${\mathcal {T}}_i$$ T i is isomorphic to $${\mathcal {T}}_i$$ T i , for each $$i \in \{1, 2, \ldots , k\}$$ i { 1 , 2 , , k } . The agreement problems is a special case of the supertree problem, the problem of synthesizing a collection of phylogenetic trees with partially overlapping taxon sets into a single supertree that represents the information in the input trees. An obstacle to building large phylogenetic supertrees is the limited amount of taxonomic overlap among the phylogenetic studies from which the input trees are obtained. Incorporating taxonomies into supertree analyses can alleviate this issue. Results We give a $${\mathcal {O}}(n k (\sum _{i \in [k]} d_i + \log ^2(nk)))$$ O ( n k ( i [ k ] d i + log 2 ( n k ) ) ) algorithm for the agreement problem, where n is the total number of distinct taxa in $${\mathcal {P}}$$ P , k is the number of trees in $${\mathcal {P}}$$ P , and $$d_i$$ d i is the maximum number of children of a node in $${\mathcal {T}}_i$$ T i . Conclusion Our algorithm can aid in integrating taxonomies into supertree analyses. Our computational experience with the algorithm suggests that its performance in practice is much better than its worst-case bound indicates.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computational Theory and Mathematics,Molecular Biology,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3