Paradoxical roles of autophagy in different stages of tumorigenesis: protector for normal or cancer cells

Author:

Sun Kai,Deng Weijie,Zhang Shanshan,Cai Ning,Jiao Shufan,Song Jianrui,Wei Lixin

Abstract

Abstract Autophagy serves as a dynamic degradation and recycling system that provides biological materials and energy in response to stress. The role of autophagy in tumor development is complex. Various studies suggest that autophagy mainly contributes to tumor suppression during the early stage of tumorigenesis and tumor promotion during the late stage of tumorigenesis. During the tumorization of normal cells, autophagy protects genomic stability by retarding stem cells-involved damage/repair cycle, and inhibits the formation of chronic inflammatory microenvironment, thus protecting normal cell homeostasis and preventing tumor generation. On the other hand, autophagy also protects tumor cells survival during malignant progression by supporting cellular metabolic demands, decreasing metabolic damage and supporting anoikis resistance and dormancy. Taken together, autophagy appears to play a role as a protector for either normal or tumor cells during the early or late stage of tumorigenesis, respectively. The process of tumorigenesis perhaps needs to undergo twice autophagy-associated screening. The normal cells that have lower autophagy capacity are prone to tumorization, and the incipient tumor cells that have higher autophagy capacity possibly are easier to survival in the hash microenvironment and accumulate more mutations to promote malignant progression.

Publisher

Springer Science and Business Media LLC

Subject

General Biochemistry, Genetics and Molecular Biology

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3