Author:
Finckbeiner Steve,Ko Pin-Joe,Carrington Blake,Sood Raman,Gross Kenneth,Dolnick Bruce,Sufrin Janice,Liu Paul
Abstract
Abstract
Background
Despite detailed in vivo knowledge of glycolytic enolases and many bacterial non-enolase members of the superfamily, little is known about the in vivo function of vertebrate non-enolase enolase superfamily members (ENOSF1s). Results of previous studies suggest involvement of the β splice form of ENOSF1 in breast and colon cancers. This study used the zebrafish (Danio rerio) as a vertebrate model of ENOSF1β function.
Results
Whole mount in situ hybridization (WISH) showed that zebrafish ENOSF1β (enosf1b) is zygotic and expressed ubiquitously through the first 24 hours post fertilization (hpf). After 24 hpf, enosf1b expression is restricted to the notochord. Embryos injected with enosf1b-EGFP mRNA grew slower than EGFP mRNA-injected embryos but caught up to the EGFP-injected embryos by 48 hpf. Embryos injected with ATG or exon 10 enosf1b mRNA-targeting morpholinos had kinked notochords, shortened anterior-posterior axes, and circulatory edema. WISH for ntl or pax2a expression showed that embryos injected with either morpholino have deformed notochord and pronephros. TUNEL staining revealed increased apoptosis in the peri-notochord region.
Conclusions
This study is the first report of ENOSF1 function in a vertebrate and shows that ENOSF1 is required for embryonic development. Increased apoptosis following enosf1b knockdown suggests a potential survival advantage for increased ENOSF1β expression in human cancers.
Publisher
Springer Science and Business Media LLC
Subject
General Biochemistry, Genetics and Molecular Biology
Reference78 articles.
1. Dayhoff MO: Computer-Analysis of Protein Sequences. Federation Proceedings. 1974, 33: 2314-2316.
2. Dayhoff MO: Origin and Evolution of Protein Superfamilies. Federation Proceedings. 1976, 35: 2132-2138.
3. Dayhoff MO, McLaughlin PJ, Barker WC, Hunt LT: Evolution of Sequences within Protein Superfamilies. Naturwissenschaften. 1975, 62: 154-161. 10.1007/BF00608697. 10.1007/BF00608697
4. Gerlt JA, Babbitt PC, Rayment I: Divergent evolution in the enolase superfamily: the interplay of mechanism and specificity. Archives of Biochemistry and Biophysics. 2005, 433: 59-70. 10.1016/j.abb.2004.07.034
5. Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJP, Chothia C, Murzin AG: Data growth and its impact on the SCOP database: new developments. Nucleic Acids Research. 2008, 36: D419-D425.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献