Inequalities for the Casorati curvatures of slant submanifolds in quaternionic space forms

Author:

Slesar Vladimir,Şahin Bayram,Vîlcu Gabriel-Eduard

Abstract

Abstract In this paper we prove two sharp inequalities that relate the normalized scalar curvature with the Casorati curvature for a slant submanifold in a quaternionic space form. Moreover, we show that in both cases, the equality at all points characterizes the invariantly quasi-umbilical submanifolds.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis

Reference41 articles.

1. Chen B-Y: Some pinching and classification theorems for minimal submanifolds. Arch. Math. 1993, 60: 568-578.

2. Chen B-Y: δ -Invariants, inequalities of submanifolds and their applications. In Topics in Differential Geometry. Ed. Acad. Române, Bucharest; 2008:29-155.

3. Deng S: Improved Chen-Ricci inequality for Lagrangian submanifolds in quaternion space forms. Int. Electron. J. Geom. 2012,5(1):163-170.

4. Hong Y, Houh CS: Lagrangian submanifolds of quaternion Kaehlerian manifolds satisfying Chen’s equality. Beitr. Algebra Geom. 1998,39(2):413-421.

5. Liu X: On Ricci curvature of totally real submanifolds in a quaternion projective space. Arch. Math. 2002,38(4):297-305.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On $$\delta $$-Casorati curvature invariants of Lagrangian submanifolds in quaternionic Kähler manifolds of constant q-sectional curvature;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2023-04-24

2. Strongly minimal complex lightlike hypersurfaces;Hacettepe Journal of Mathematics and Statistics;2022-12-31

3. Inequalities for Riemannian Submersions Involving Casorati Curvatures: A New Approach;6th International Students Science Congress Proceedings Book;2022-09-10

4. Slant Submanifolds of Quaternion Kaehler and HyperKaehler Manifolds;Complex Geometry of Slant Submanifolds;2022

5. Curvature Inequalities for Slant Submanifolds in Pointwise Kenmotsu Space Forms;Contact Geometry of Slant Submanifolds;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3