Abstract
Abstract
The article provides the generalization of Jensen’s inequality for convex functions on the line segments. The main and preliminary inequalities are expressed in discrete form using affine combinations that can be reduced to convex combinations. The resulting quasi-arithmetic means are used to extend the two well-known inequalities.
MSC:26A51, 26D15.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference13 articles.
1. Jensen JLWV: Om konvekse Funktioner og Uligheder mellem Middelværdier. Nyt Tidsskr. Math. B 1905, 16: 49-68.
2. Pečarić JE, Proschan F, Tong YL: Convex Functions, Partial Orderings, and Statistical Applications. Academic Press, New York; 1992.
3. Rockafellar RT: Convex Analysis. Princeton University Press, Princeton; 1972.
4. Pečarić JE: A simple proof of the Jensen-Steffensen inequality. Am. Math. Mon. 1984, 91: 195-196. 10.2307/2322359
5. Bjelica M: Refinement and converse of Brunk-Olkin inequality. J. Math. Anal. Appl. 1998, 272: 462-467.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献