Author:
Jleli Mohamed,Samet Bessem,Vetro Calogero
Abstract
Abstract
Let X be a non-empty set. We say that an element
x
∈
X
is a φ-fixed point of T, where
φ
:
X
→
[
0
,
∞
)
and
T
:
X
→
X
, if x is a fixed point of T and
φ
(
x
)
=
0
. In this paper, we establish some existence results of φ-fixed points for various classes of operators in the case, where X is endowed with a metric d. The obtained results are used to deduce some fixed point theorems in the case where X is endowed with a partial metric p.
MSC:54H25, 47H10.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference24 articles.
1. Annals of the New York Academy of Sciences 728;SG Matthews,1994
2. Oltra S, Valero O: Banach’s fixed point theorem for partial metric spaces. Rend. Ist. Mat. Univ. Trieste 2004, 36: 17–26.
3. Abdeljawad T, Karapinar E, Taş K: A generalized contraction principle with control functions on partial metric spaces. Comput. Math. Appl. 2012,63(3):716–719. 10.1016/j.camwa.2011.11.035
4. Altun I, Acar O: Fixed point theorems for weak contractions in the sense of Berinde on partial metric spaces. Topol. Appl. 2012, 159: 2642–2648. 10.1016/j.topol.2012.04.004
5. Altun I, Erduran A: Fixed point theorems for monotone mappings on partial metric spaces. Fixed Point Theory Appl. 2011., 2011: Article ID 508730
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献