Author:
Xiong Zhiping,Qin Yingying,Yuan Shifang
Abstract
Abstract
We give in this article the maximal and minimal ranks of the matrix expression A-B
1
V
1
C
1-B
2
V
2
C
2-B
3
V
3
C
3-B
4
V
4
C
4 with respect to V
1, V
2, V
3, and V
4. As applications, we derive the extremal ranks of the generalized Schur complement A - BM
(1)
C - DN
(1)
G and the partial matrix (A BM
(1)
C DN
(1)
G) with respect to the generalized inverse M
(1) ε M{1} and N
(1) ∈ N{1}.
AMS classifications: 15A03; 15A09; 15A24.
Publisher
Springer Science and Business Media LLC
Subject
Applied Mathematics,Discrete Mathematics and Combinatorics,Analysis
Reference28 articles.
1. Penrose R: A generalized inverse for matrices. Proc Cambridge Philos Soc 1955, 51: 406–413. 10.1017/S0305004100030401
2. Ben-Israel A, Greville TNE: Generalized Inverse: Theory and Applications, Wiley-Interscience, 1974. 2nd edition. Springer-Verlag, New York; 2002.
3. Wang G, Wei Y, Qiao S: Generalized Inverses: Theory and Computations. Science Press, Beijing; 2004.
4. Braden HW: The matrix equation A
T
X ± X
T
A = B . SIAM J Matrix Anal Appl 1998, 20: 295–302. 10.1137/S0895479897323270
5. Johnson CR, Whitney GT: Minimum rank completions. Linear and multilinear Algebra 1991, 28: 271–273. 10.1080/03081089108818051
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献