Three-dimensional-printed heart model can determine univentricular repair strategy in borderline double-outlet right ventricle

Author:

Katayama YuzoORCID,Isobe Sho,Ozawa Tsukasa,Fujii Takeshiro

Abstract

Abstract Background As double-outlet right ventricle has a wide pathophysiology spectrum, its comprehensive treatment strategy is determined based on relevant factors, such as the location and size of the ventricular septal defect, ventricular volume, and relationship of the great arteries. However, for borderline double-outlet right ventricle cases, it is occasionally difficult to decide the treatment strategy preoperatively. Recently, advances in 3D printing technology based on computed tomography have enabled the creation of 3D heart models of congenital heart disease that can precisely reproduce the anatomical structure of each patient even for complex anomalies. Herein, we describe a young patient in whom univentricular repair could be decided after confirming the 3D heart model and intracardiac structure under direct vision. Case presentation We describe a 3-year-old girl who was diagnosed with double-outlet right ventricle and severe pulmonary valve stenosis at birth and who underwent a left modified Blalock–Taussig shunt at 2 years of age. Preoperative examination revealed a borderline condition for biventricular repair characterized by a small left ventricle volume and side-by-side relationship of the great artery. After a preoperative discussion using a 3D heart model, we concurred that an intraoperative assessment would be made as to whether biventricular repair was possible or not. After confirming the intracardiac structure under direct vision, we assessed that intraventricular rerouting was not possible owing to the high risk of subvalvular aortic stenosis as there was no tissue that could be incised between the right ventricular free wall and the primary interventricular foramen, as indicated in the 3D heart model. Thus, atrial septostomy and Glenn anastomosis were performed. Conclusions We report a 3-year-old girl with a borderline double-outlet right ventricle in whom a univentricular repair strategy could be decided after confirming the 3D heart model and intracardiac structure under direct vision. A 3D-printed heart model can be useful in patients whose repair strategy is difficult to judge for the borderline double-outlet right ventricle.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3