Author:
Abdou Rania Mohamed,Weheiba Hoda Mahmoud Ibrahim
Abstract
Abstract
Background
As brain activity depends greatly on the functions provided by lipid membranes, dietary fat in early life can affect the developing nervous system. Despite the adoption of an early more aggressive parenteral nutrition approach with amino acid infusions still reluctance to the early use of intravenous lipids in neonates.
Aim
To compare the effect of delayed versus early introduction of intravenous lipid in preterm on the biochemical parameters and on brain development by the cortical auditory evoked potential (CAEP) latency and amplitude.
Methods
This is a comparative study included 49 neonates admitted at the ain shams university NICUs. Participants were divided into two groups: 26 in group of early lipid infusion and 23 in late lipid infusion, Demographic data, and biochemical parameters were documented during the 1st 2 weeks of life. The CAEP was performed at age of 6 months. The latency and amplitude of P1 were recorded and compared between both groups.
Results
In the present work we found that group of early lipid infusion had reach their full oral intake earlier with shorter duration of parenteral nutrition and length of stay. They had better weight gain and significantly better glucose level control than group of late lipid infusion. There was no significant difference in the other chemical parameters between both groups expect for the higher incidence of cholestasis in the group of late lipid infusion. At 6 months of age, the group of early lipid infusion had significantly shorter latency and amplitude of P1 than the group of late lipid infusion.
Conclusion
Early effective nutrition positively affect feeding tolerance and weight gain and maturation of higher brain centers brain.
Publisher
Springer Science and Business Media LLC
Reference36 articles.
1. Wang L, Xu RJ (2007) The effects of perinatal protein malnutrition on spatial learning and memory behavior and brain-derived neurotrophic factor concentration in the brain tissue in young rats. Asia Pacific J Clin Nutrit 16:467–472
2. Ehrenkranz RA, Dusick AM, Vohr BR, Wright LL, Wrage LA, Poole WK (2006) Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics. 117:1253–1261
3. Ehringer W, Belcher D, Wassall SR, Stillwell W (1990) A comparison of the effects of linoleic (18:3ω3) and docosahexaenoic (22:6ω3) acids on phospholipid bilayers. Chem Phys Lipids 54:79–88
4. Franz AR, Pohlandt F, Bode H et al (2009) Postdischarge growth and neurodevelopmental outcome at 5.4 years in extremely preterm infants after intensive neonatal nutritional support. Pediatrics. 123:e101–e109
5. Valentine CJ, Fernandez S, Rogers LK et al (2009) Early amino-acid administration improves preterm infant weight. J Perinatol 29:428–432