Abstract
AbstractTrees belong to humanity’s heritage, but they are more than that. Their loss, through catastrophic fires or under business-as-usual, is devastating to many forms of life. Moved by this fact, we begin with an assertion that heritage can have an active role in the design of future places. Written from within the field of architecture, this article focuses on structures that house life. Habitat features of trees and artificial replacement habitats for arboreal wildlife serve as concrete examples. Designs of such habitats need to reflect behaviours, traditions and cultures of birds, bats, and other animals. Our narrative highlights the nonhuman aspect of heritage, seeking to understand how nonhuman stakeholders can act as users and consumers of heritage and not only as its constituents. Our working definition states that more-than-human heritage encompasses tangible and intangible outcomes of historical processes that are of value to human as well as nonhuman stakeholders. From this basis, the article asks how the established notions of heritage can extend to include nonhuman concerns, artefacts, behaviours and cultures. As a possible answer to this question, the hypothesis tested here is that digital information can (1) contribute to the preservation of more-than-human heritage; and (2) illuminate its characteristics for future study and use. This article assesses the potential of three imaging technologies and considers the resulting data within the conceptual framework of more-than-human heritage, illuminating some of its concrete aspects and challenges.
Funder
Australian Research Council
Publisher
Springer Science and Business Media LLC
Reference128 articles.
1. Amundson, Ron, and George V. Lauder. 1994. Function Without Purpose The Uses of Causal Role Function in Evolutionary Biology. Biology and Philosophy 9 (4): 443–469. https://doi.org/10.1007/BF00850375.
2. Anderson, Eugene Newton, Deborah M. Pearsall, Eugene S. Hunn, and Nancy J. Turner, eds. 2011. Ethnobiology. Oxford: Wiley-Blackwell.
3. Barthélémy, Daniel, and Yves Caraglio. 2007. Plant Architecture: A Dynamic, Multilevel and Comprehensive Approach to Plant Form, Structure and Ontogeny. Annals of Botany 99 (3): 375–407. https://doi.org/10.1093/aob/mcl260.
4. Bauhus, Jürgen, Kristin Baber, and Jörg Müller. 2018. Dead Wood in Forest Ecosystems. Oxford: Oxford University Press. https://doi.org/10.1093/OBO/9780199830060-0196.
5. Begon, Michael, Colin R. Townsend, and John L. Harper. 1986. 2006. Ecology: From Individuals to Ecosystems. 4th ed. Massachusetts: Blackwell.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献