Functional genomic analyses uncover APOE-mediated regulation of brain and cerebrospinal fluid beta-amyloid levels in Parkinson disease
-
Published:2020-11-19
Issue:1
Volume:8
Page:
-
ISSN:2051-5960
-
Container-title:Acta Neuropathologica Communications
-
language:en
-
Short-container-title:acta neuropathol commun
Author:
Ibanez Laura, Bahena Jorge A., Yang Chengran, Dube Umber, Farias Fabiana H. G., Budde John P., Bergmann Kristy, Brenner-Webster Carol, Morris John C., Perrin Richard J., Cairns Nigel J., O’Donnell John, Álvarez Ignacio, Diez-Fairen Monica, Aguilar Miquel, Miller Rebecca, Davis Albert A., Pastor Pau, Kotzbauer Paul, Campbell Meghan C., Perlmutter Joel S., Rhinn Herve, Harari Oscar, Cruchaga Carlos, Benitez Bruno A.ORCID
Abstract
AbstractAlpha-synuclein is the main protein component of Lewy bodies, the pathological hallmark of Parkinson’s disease. However, genetic modifiers of cerebrospinal fluid (CSF) alpha-synuclein levels remain unknown. The use of CSF levels of amyloid beta1–42, total tau, and phosphorylated tau181 as quantitative traits in genetic studies have provided novel insights into Alzheimer’s disease pathophysiology. A systematic study of the genomic architecture of CSF biomarkers in Parkinson’s disease has not yet been conducted. Here, genome-wide association studies of CSF biomarker levels in a cohort of individuals with Parkinson’s disease and controls (N = 1960) were performed. PD cases exhibited significantly lower CSF biomarker levels compared to controls. A SNP, proxy for APOE ε4, was associated with CSF amyloid beta1–42 levels (effect = − 0.5, p = 9.2 × 10−19). No genome-wide loci associated with CSF alpha-synuclein, total tau, or phosphorylated tau181 levels were identified in PD cohorts. Polygenic risk score constructed using the latest Parkinson’s disease risk meta-analysis were associated with Parkinson’s disease status (p = 0.035) and the genomic architecture of CSF amyloid beta1–42 (R2 = 2.29%; p = 2.5 × 10−11). Individuals with higher polygenic risk scores for PD risk presented with lower CSF amyloid beta1–42 levels (p = 7.3 × 10−04). Two-sample Mendelian Randomization revealed that CSF amyloid beta1–42 plays a role in Parkinson’s disease (p = 1.4 × 10−05) and age at onset (p = 7.6 × 10−06), an effect mainly mediated by variants in the APOE locus. In a subset of PD samples, the APOE ε4 allele was associated with significantly lower levels of CSF amyloid beta1–42 (p = 3.8 × 10−06), higher mean cortical binding potentials (p = 5.8 × 10−08), and higher Braak amyloid beta score (p = 4.4 × 10−04). Together these results from high-throughput and hypothesis-free approaches converge on a genetic link between Parkinson’s disease, CSF amyloid beta1–42, and APOE.
Funder
National Institute on Aging National Institute of Neurological Disorders and Stroke Alzheimer's Association
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine
Reference73 articles.
1. Atik A, Stewart T, Zhang J (2016) Alpha-synuclein as a biomarker for Parkinson’s disease. Brain Pathol 26:410–418. https://doi.org/10.1111/bpa.12370 2. Bandres-Ciga S, Saez-Atienzar S, Kim J, Makarious M, Faghri F, Diez-Fairen M, Iwaki H, Leonard H, Botia J, Ryten M, Hernandez D, Gibbs J, Ding J, Gan-Or Z, Noyce A, Pihlstrom L, Torkamani A, Scholz S, Traynor B, Ehrlich D, Scherzer C, Bookman M, Cookson M, Blauwendraat C, Nalls M, Singleton A (2020) Large-scale pathway-specific polygenic risk, transcriptomic community networks and functional inferences in Parkinson disease. bioRxiv. https://doi.org/10.1101/2020.05.05.079228 3. Bassil F, Brown HJ, Pattabhiraman S, Iwasyk JE, Maghames CM, Meymand ES, Cox TO, Riddle DM, Zhang B, Trojanowski JQ, Lee VM (2020) Amyloid-beta (abeta) plaques promote seeding and spreading of alpha-synuclein and tau in a mouse model of lewy body disorders with abeta pathology. Neuron 105(260–275):e266. https://doi.org/10.1016/j.neuron.2019.10.010 4. Benitez BA, Davis AA, Jin SC, Ibanez L, Ortega-Cubero S, Pastor P, Choi J, Cooper B, Perlmutter JS, Cruchaga C (2016) Resequencing analysis of five Mendelian genes and the top genes from genome-wide association studies in Parkinson’s disease. Mol Neurodegener 11:29. https://doi.org/10.1186/s13024-016-0097-0 5. Blauwendraat C, Heilbron K, Vallerga CL, Bandres-Ciga S, von Coelln R, Pihlstrom L, Simon-Sanchez J, Schulte C, Sharma M, Krohn L, Siitonen A, Iwaki H, Leonard H, Noyce AJ, Tan M, Gibbs JR, Hernandez DG, Scholz SW, Jankovic J, Shulman LM, Lesage S, Corvol JC, Brice A, van Hilten JJ, Marinus J, andMe Research T, Eerola-Rautio J, Tienari P, Majamaa K, Toft M, Grosset DG, Gasser T, Heutink P, Shulman JM, Wood N, Hardy J, Morris HR, Hinds DA, Gratten J, Visscher PM, Gan-Or Z, Nalls MA, Singleton AB, International Parkinson’s Disease Genomics C (2019) Parkinson’s disease age at onset genome-wide association study: defining heritability, genetic loci, and alpha-synuclein mechanisms. Mov Disord 34:866–875. https://doi.org/10.1002/mds.27659
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|