Mical modulates Tau toxicity via cysteine oxidation in vivo

Author:

Prifti Engie,Tsakiri Eleni N.,Vourkou Ergina,Stamatakis George,Samiotaki Martina,Skoulakis Efthimios M. C.,Papanikolopoulou KaterinaORCID

Abstract

AbstractTau accumulation is clearly linked to pathogenesis in Alzheimer’s disease and other Tauopathies. However, processes leading to Tau fibrillization and reasons for its pathogenicity remain largely elusive. Mical emerged as a novel interacting protein of human Tau expressed in Drosophila brains. Mical is characterized by the presence of a flavoprotein monooxygenase domain that generates redox potential with which it can oxidize target proteins. In the well-established Drosophila Tauopathy model, we use genetic interactions to show that Mical alters Tau interactions with microtubules and the Actin cytoskeleton and greatly affects Tau aggregation propensity and Tau-associated toxicity and dysfunction. Exploration of the mechanism was pursued using a Mical inhibitor, a mutation in Mical that selectively disrupts its monooxygenase domain, Tau transgenes mutated at cysteine residues targeted by Mical and mass spectrometry analysis to quantify cysteine oxidation. The collective evidence strongly indicates that Mical’s redox activity mediates the effects on Tau via oxidation of Cys322. Importantly, we also validate results from the fly model in human Tauopathy samples by showing that MICAL1 is up-regulated in patient brains and co-localizes with Tau in Pick bodies. Our work provides mechanistic insights into the role of the Tau cysteine residues as redox-switches regulating the process of Tau self-assembly into inclusions in vivo, its function as a cytoskeletal protein and its effect on neuronal toxicity and dysfunction.

Funder

Fondation Sante

Stavros Niarchos Foundation

Hellenic Foundation for Research and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3