Small-molecule modulation of the p75 neurotrophin receptor inhibits a wide range of tau molecular pathologies and their sequelae in P301S tauopathy mice

Author:

Yang Tao,Liu Harry,Tran Kevin C.,Leng Albert,Massa Stephen M.ORCID,Longo Frank M.

Abstract

AbstractIn tauopathies, phosphorylation, acetylation, cleavage and other modifications of tau drive intracellular generation of diverse forms of toxic tau aggregates and associated seeding activity, which have been implicated in subsequent synaptic failure and neurodegeneration. Suppression of this wide range of pathogenic species, seeding and toxicity mechanisms, while preserving the physiological roles of tau, presents a key therapeutic goal. Identification and targeting of signaling networks that influence a broad spectrum of tau pathogenic mechanisms might prevent or reverse synaptic degeneration and modify disease outcomes. The p75 neurotrophin receptor (p75NTR) modulates such networks, including activation of multiple tau kinases, calpain and rhoA-cofilin activity. The orally bioavailable small-molecule p75NTR modulator, LM11A-31, was administered to tauP301S mice for 3 months starting at 6 months of age, when tau pathology was well established. LM11A-31 was found to reduce: excess activation of hippocampal cdk5 and JNK kinases and calpain; excess cofilin phosphorylation, tau phosphorylation, acetylation and cleavage; accumulation of multiple forms of insoluble tau aggregates and filaments; and, microglial activation. Hippocampal extracts from treated mice had substantially reduced tau seeding activity. LM11A-31 treatment also led to a reversal of pyramidal neuron dendritic spine loss, decreased loss of dendritic complexity and improvement in performance of hippocampal behaviors. These studies identify a therapeutically tractable upstream signaling module regulating a wide spectrum of basic mechanisms underlying tauopathies.

Funder

Jean Perkins Foundation

Koret Foundation

National Institute of Neurological Disorders and Stroke

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3