Immunological and tumor-intrinsic mechanisms mediate the synergistic growth suppression of experimental glioblastoma by radiotherapy and MET inhibition

Author:

Silginer ManuelaORCID,Papa Eleanna,Szabó Emese,Vasella Flavio,Pruschy Martin,Stroh Christopher,Roth Patrick,Weiss Tobias,Weller Michael

Abstract

AbstractThe hepatocyte growth factor (HGF)/MET signaling pathway has been proposed to be involved in the resistance to radiotherapy of glioblastoma via proinvasive and DNA damage response pathways.Here we assessed the role of the MET pathway in the response to radiotherapy in vitro and in vivo in syngeneic mouse glioma models. We find that the murine glioma cell lines GL-261, SMA-497, SMA-540 and SMA-560 express HGF and its receptor MET and respond to exogenous HGF with MET phosphorylation. Glioma cell viability or proliferation are unaffected by genetic or pharmacological MET inhibition using tepotinib or CRISPR/Cas9-engineered Met gene knockout and MET inhibition fails to sensitize glioma cells to irradiation in vitro. In contrast, the combination of tepotinib with radiotherapy prolongs survival of orthotopic SMA-560 or GL-261 glioma-bearing mice compared with radiotherapy or tepotinib treatment alone. Synergy is lost when such experiments are conducted in immunodeficient Rag1−/− mice, and, importantly, also when Met gene expression is disrupted in the tumor cells. Combination therapy suppresses a set of pro-inflammatory mediators including matrix metalloproteases that are upregulated by radiotherapy alone and that have been linked to poor outcome in glioblastoma. Several of these mediators are positively regulated by transforming growth factor (TGF)-β, and pSMAD2 levels as a surrogate marker of TGF-β pathway activity are suppressed by combination treatment. We conclude that synergistic suppression of experimental syngeneic glioma growth by irradiation and MET inhibition requires MET expression in the tumor as well as an intact immune system. Clinical evaluation of this combined strategy in newly diagnosed glioblastoma is warranted.

Funder

San Salvatore Foundation

University of Zurich

Merck KGaA

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3