Abstract
AbstractIn Alzheimer’s disease (AD), reactive astrocytes produce extracellular vesicles (EVs) that affect mitochondria in neurons. Here, we show that Aβ-induced generation of the sphingolipid ceramide by acid sphingomyelinase (A-SMase) triggered proinflammatory cytokine (C1q, TNF-α, IL-1α) release by microglia, which induced the reactive astrocytes phenotype and secretion of EVs enriched with ceramide. These EVs impeded the capacity of neurons to respond to energy demand. Inhibition of A-SMase with Arc39 and Imipramine reduced the secretion of cytokines from microglia, prompting us to test the effect of Imipramine on EV secretion and AD pathology in the 5xFAD mouse model. Brain derived-EVs from 5xFAD mice treated with Imipramine contained reduced levels of the astrocytic marker GFAP, ceramide, and Aβ and did not impair mitochondrial respiration when compared to EVs derived from untreated 5xFAD brain. Consistently, Imipramine-treated 5xFAD mice showed reduced AD pathology. Our study identifies A-SMase inhibitors as potential AD therapy by preventing cyotokine-elicited secretion of mitotoxic EVs from astrocytes.
Funder
National Institute on Aging
Veterans Administration Medical Center
BrightFocus Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献