Proteomic analysis across patient iPSC-based models and human post-mortem hippocampal tissue reveals early cellular dysfunction and progression of Alzheimer’s disease pathogenesis
-
Published:2023-09-15
Issue:1
Volume:11
Page:
-
ISSN:2051-5960
-
Container-title:Acta Neuropathologica Communications
-
language:en
-
Short-container-title:acta neuropathol commun
Author:
Pomeshchik Yuriy,Velasquez Erika,Gil Jeovanis,Klementieva Oxana,Gidlöf Ritha,Sydoff Marie,Bagnoli Silvia,Nacmias Benedetta,Sorbi Sandro,Westergren-Thorsson Gunilla,Gouras Gunnar K.,Rezeli Melinda,Roybon Laurent
Abstract
AbstractThe hippocampus is a primary region affected in Alzheimer’s disease (AD). Because AD postmortem brain tissue is not available prior to symptomatic stage, we lack understanding of early cellular pathogenic mechanisms. To address this issue, we examined the cellular origin and progression of AD pathogenesis by comparing patient-based model systems including iPSC-derived brain cells transplanted into the mouse brain hippocampus. Proteomic analysis of the graft enabled the identification of pathways and network dysfunction in AD patient brain cells, associated with increased levels of Aβ-42 and β-sheet structures. Interestingly, the host cells surrounding the AD graft also presented alterations in cellular biological pathways. Furthermore, proteomic analysis across human iPSC-based models and human post-mortem hippocampal tissue projected coherent longitudinal cellular changes indicative of early to end stage AD cellular pathogenesis. Our data showcase patient-based models to study the cell autonomous origin and progression of AD pathogenesis.
Graphical Abstract
Funder
Vetenskapsrådet Lund University
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine
Reference84 articles.
1. Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403 2. Oakley H, Cole SL, Logan S, Maus E, Shao P, Craft J, Guillozet-Bongaarts A, Ohno M, Disterhoft J, Van Eldik L, Berry R, Vassar R (2006) Intraneuronal beta-amyloid aggregates, neurodegeneration, and neuron loss in transgenic mice with five familial Alzheimer’s disease mutations: potential factors in amyloid plaque formation. J Neurosci 26(40):10129–10140 3. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R, Wichterle H, Henderson CE, Eggan K (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321(5893):1218–1221 4. Sasaguri H, Hashimoto S, Watamura N, Sato K, Takamura R, Nagata K, Tsubuki S, Ohshima T, Yoshiki A, Sato K, Kumita W, Sasaki E, Kitazume S, Nilsson P, Winblad B, Saito T, Iwata N, Saido TC (2022) Recent advances in the modeling of Alzheimer’s disease. Front Neurosci 16:807473 5. Konttinen H, Cabral-da-Silva MEC, Ohtonen S, Wojciechowski S, Shakirzyanova A, Caligola S, Giugno R, Ishchenko Y, Hernandez D, Fazaludeen MF, Eamen S, Budia MG, Fagerlund I, Scoyni F, Korhonen P, Huber N, Haapasalo A, Hewitt AW, Vickers J, Smith GC, Oksanen M, Graff C, Kanninen KM, Lehtonen S, Propson N, Schwartz MP, Pebay A, Koistinaho J, Ooi L, Malm T (2019) PSEN1DeltaE9, APPswe, and APOE4 confer disparate phenotypes in human iPSC-derived microglia. Stem Cell Reports 13(4):669–683
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|