Performance of αSynuclein RT-QuIC in relation to neuropathological staging of Lewy body disease

Author:

Hall SaraORCID,Orrù Christina D.,Serrano Geidy E.,Galasko Douglas,Hughson Andrew G.,Groveman Bradley R.,Adler Charles H.,Beach Thomas G.,Caughey Byron,Hansson Oskar

Abstract

AbstractCurrently, there is a need for diagnostic markers in Lewy body disorders (LBD). α-synuclein (αSyn) RT-QuIC has emerged as a promising assay to detect misfolded αSyn in clinically or neuropathologically established patients with various synucleinopathies. In this study, αSyn RT-QuIC was used to analyze lumbar CSF in a clinical cohort from the Swedish BioFINDER study and postmortem ventricular CSF in a neuropathological cohort from the Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation Program (AZSAND/BBDP). The BioFINDER cohort included 64 PD/PDD, 15 MSA, 15 PSP, 47 controls and two controls who later converted to PD/DLB. The neuropathological cohort included 101 cases with different brain disorders, including LBD and controls. In the BioFINDER cohort αSyn RT-QuIC identified LBD (i.e. PD, PDD and converters) vs. controls with a sensitivity of 95% and a specificity of 83%. The two controls that converted to LBD were αSyn RT-QuIC positive. Within the AZSAND/BBDP cohort, αSyn RT-QuIC identified neuropathologically verified "standard LBD" (i.e. PD, PD with AD and DLB; n = 25) vs. no LB pathology (n = 53) with high sensitivity (100%) and specificity (94%). Only 57% were αSyn RT-QuIC positive in the subgroup with "non-standard" LBD (i.e., AD with Lewy Bodies not meeting criteria for DLB or PD, and incidental LBD, n = 23). Furthermore, αSyn RT-QuIC reliably identified cases with LB pathology in the cortex (97% sensitivity) vs. cases with no LBs or LBs present only in the olfactory bulb (93% specificity). However, the sensitivity was low, only 50%, for cases with LB pathology restricted to the brainstem or amygdala, not affecting the allocortex or neocortex. In conclusion, αSyn RT-QuIC of CSF samples is highly sensitive and specific for identifying cases with clinicopathologically-defined Lewy body disorders and shows a lower sensitivity for non-standard LBD or asymptomatic LBD or in cases with modest LB pathology not affecting the cortex.

Funder

Vetenskapsrådet

Knut och Alice Wallenbergs Stiftelse

Marianne and Marcus Wallenberg foundation

Strategic Research Area MultiPark at Lund University

Alzheimerfonden

Hjärnfonden

Parkinsonfonden

Konung Gustaf V:s och Drottning Victorias Frimurarestiftelse

Regionalt Forskningsstöd

Swedish federal government under the ALF agreement

National Institute of Neurological Disorders and Stroke

National Institute on Aging

Arizona Department of Health Services

Arizona Biomedical Research Commission

Michael J. Fox Foundation for Parkinson's Research

Lund University

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3