Abstract
AbstractDiffusely infiltrative low-grade gliomas (LGG) are primary brain tumours that arise predominantly in the cerebral hemispheres of younger adults. LGG can display either astrocytic or oligodendroglial histology and do not express malignant histological features. Vast majority of LGG are unified by IDH mutations. Other genomic features including ATRX as well as copy number status of chromosomes 1p and 19q serve to molecularly segregate this tumor group. Despite the exponential gains in molecular profiling and understanding of LGG, survival rates and treatment options have stagnated over the past few decades with few advancements. In this study, we utilize low grade glioma RNA-seq data from the Cancer Genome Atlas (TCGA-LGG) and tandem mass-spectrometry on an in-house cohort of 54 formalin-fixed paraffin-embedded (FFPE) LGG specimens to investigate the transcriptomic and proteomic profiles across the three molecular subtypes of LGG (Type I: IDH mutant – 1p19q co-deleted, Type II: IDH mutant – 1p19q retained, Type III: IDH wildtype). Within the 3 LGG subtypes, gene expression was driven heavily by IDH mutation and 1p19q co-deletion. In concordance with RNA expression, we were able to identify decreased expressions of proteins coded in 1p19q in Type I LGG. Further proteomic analysis identified 54 subtype specific proteins that were used to classify the three subtypes using a multinomial regression model (AUC = 0.911). Type I LGG were found to have increased protein expression of several metabolic proteins while Type III LGG were found to have increased immune infiltration and inflammation related proteins. Here we present the largest proteomic cohort of LGG and show that proteomic profiles can be successfully analyzed from FFPE tissues. We uncover previously known and novel subtype specific markers that are useful for the proteomic classification of LGG subtypes.
Funder
BC Cancer Foundation
Brain Tumour Foundation of Canada
VGH and UBC Hospital Foundation
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology (clinical),Pathology and Forensic Medicine
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献