Identification of a dysfunctional microglial population in human Alzheimer’s disease cortex using novel single-cell histology image analysis

Author:

Swanson Molly E. V.ORCID,Scotter Emma L.,Smyth Leon C. D.,Murray Helen C.,Ryan Brigid,Turner Clinton,Faull Richard L. M.,Dragunow Mike,Curtis Maurice A.

Abstract

AbstractIn Alzheimer’s disease (AD), microglia are affected by disease processes, but may also drive pathogenesis. AD pathology-associated microglial populations have been identified with single-cell RNA-Seq, but have not been validated in human brain tissue with anatomical context. Here, we quantified myeloid cell markers to identify changes in AD pathology-associated microglial populations. We performed fluorescent immunohistochemistry on normal (n = 8) and AD (n = 8) middle temporal gyri, co-labelling the pan-myeloid cell marker, Iba1, with one of 11 markers of interest (MOIs): CD45, HLA-DR, CD14, CD74, CD33, CD206, CD32, CD163, P2RY12, TMEM119, L-Ferritin. Novel image analyses quantified the single-cell abundance of Iba1 and each MOI. Each cell was gated into one Iba1-MOI population (Iba1low MOIhigh, Iba1high MOIhigh, or Iba1high MOIlow) and the abundance of each population was compared between AD and control. Triple-labelling of L-Ferritin and Iba1 with a subset of MOIs was performed to investigate L-Ferritin-MOI co-expression on Iba1low cells. Iba1low MOIhigh myeloid cell populations delineated by MOIs CD45, HLA-DR, CD14, CD74, CD33, CD32, and L-Ferritin were increased in AD. Further investigation of the Iba1low MOIhigh populations revealed that their abundances correlated with tau, but not amyloid beta, load in AD. The Iba1low microglial population highly expressed L-Ferritin, reflecting microglial dysfunction. The L-Ferritinhigh CD74high HLA-DRhigh phenotype of the Iba1low population mirrors that of a human AD pathology-associated microglial subpopulation previously identified using single-cell RNA-Seq. Our high-throughput immunohistochemical data with anatomical context support the microglial dysfunction hypothesis of AD.

Funder

Health Research Council of New Zealand

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3