Fusions involving BCOR and CREBBP are rare events in infiltrating glioma

Author:

Pisapia David J.,Ohara Kentaro,Bareja Rohan,Wilkes David C.,Hissong Erika,Croyle Jaclyn A.,Kim Joon-Hyung,Saab Jad,MacDonald Theresa Y.,Beg Shaham,O’Reilly Catherine,Kudman Sarah,Rubin Mark A.,Elemento Olivier,Sboner Andrea,Greenfield Jeffrey,Mosquera Juan Miguel

Abstract

AbstractBCOR has been recognized as a recurrently altered gene in a subset of pediatric tumors of the central nervous system (CNS). Here, we describe a novel BCOR-CREBBP fusion event in a case of pediatric infiltrating astrocytoma and further probe the frequency of related fusion events in CNS tumors. We analyzed biopsy samples taken from a 15-year-old male with an aggressive, unresectable and multifocal infiltrating astrocytoma. We performed RNA sequencing (RNA-seq) and targeted DNA sequencing. In the index case, the fused BCOR-CREBBP transcript comprises exons 1–4 of BCOR and exon 31 of CREBBP. The fused gene thus retains the Bcl6 interaction domain of BCOR while eliminating the domain that has been shown to interact with the polycomb group protein PCGF1. The fusion event was validated by FISH and reverse transcriptase PCR. An additional set of 177 pediatric and adult primary CNS tumors were assessed via FISH for BCOR break apart events, all of which were negative. An additional 509 adult lower grade infiltrating gliomas from the publicly available TCGA dataset were screened for BCOR or CREBBP fusions. In this set, one case was found to harbor a CREBBP-GOLGA6L2 fusion and one case a CREBBP-SRRM2 fusion. In a third patient, both BCOR-L3MBTL2 and EP300-BCOR fusions were seen. Of particular interest to this study, EP300 is a paralog of CREBBP and the breakpoint seen involves a similar region of the gene to that of the index case; however, the resultant transcript is predicted to be completely distinct. While this gene fusion may play an oncogenic role through the loss of tumor suppressor functions of BCOR and CREBBP, further screening over larger cohorts and functional validation is needed to determine the degree to which this or similar fusions are recurrent and to elucidate their oncogenic potential.

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Clinical Neurology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3