Gestational age data completeness, quality and validity in population-based surveys: EN-INDEPTH study

Author:

Haider M. Moinuddin, ,Mahmud Kaiser,Blencowe Hannah,Ahmed Tahmeed,Akuze Joseph,Cousens Simon,Delwar Nafisa,Fisker Ane B.,Ponce Hardy Victoria,Hasan S. M. Tafsir,Imam Md. Ali,Kajungu Dan,Khan Md Alfazal,Martins Justiniano S. D.,Nahar Quamrun,Nettey Obed Ernest A.,Tesega Adane Kebede,Yargawa Judith,Alam Nurul,Lawn Joy E.

Abstract

AbstractBackgroundPreterm birth (gestational age (GA) <37 weeks) is the leading cause of child mortality worldwide. However, GA is rarely assessed in population-based surveys, the major data source in low/middle-income countries. We examined the performance of new questions to measure GA in household surveys, a subset of which had linked early pregnancy ultrasound GA data.MethodsThe EN-INDEPTH population-based survey of 69,176 women was undertaken (2017-2018) in five Health and Demographic Surveillance System sites in Bangladesh, Ethiopia, Ghana, Guinea-Bissau and Uganda. We included questions regarding GA in months (GAm) for all women and GA in weeks (GAw) for a subset; we also asked if the baby was ‘born before expected’ to estimate preterm birth rates. Survey data were linked to surveillance data in two sites, and to ultrasound pregnancy dating at <24 weeks in one site. We assessed completeness and quality of reported GA. We examined the validity of estimated preterm birth rates by sensitivity and specificity, over/under-reporting of GAw in survey compared to ultrasound by multinomial logistic regression, and explored perceptions about GA and barriers and enablers to its reporting using focus group discussions (n= 29).ResultsGAm questions were almost universally answered, but heaping on 9 months resulted in underestimation of preterm birth rates. Preference for reporting GAw in even numbers was evident, resulting in heaping at 36 weeks; hence, over-estimating preterm birth rates, except in Matlab where the peak was at 38 weeks. Questions regarding ‘born before expected’ were answered but gave implausibly low preterm birth rates in most sites. Applying ultrasound as the gold standard in Matlab site, sensitivity of survey-GAw for detecting preterm birth (GAw <37) was 60% and specificity was 93%. Focus group findings suggest that women perceive GA to be important, but usually counted in months. Antenatal care attendance, women’s education and health cards may improve reporting.ConclusionsThis is the first published study assessing GA reporting in surveys, compared with the gold standard of ultrasound. Reporting GAw within 5 years’ recall is feasible with high completeness, but accuracy is affected by heaping. Compared to ultrasound-GAw, results are reasonably specific, but sensitivity needs to be improved. We propose revised questions based on the study findings for further testing and validation in settings where pregnancy ultrasound data and/or last menstrual period dates/GA recorded in pregnancy are available. Specific training of interviewers is recommended.

Publisher

Springer Science and Business Media LLC

Subject

Public Health, Environmental and Occupational Health,Epidemiology

Reference43 articles.

1. Chawanpaiboon S, Vogel J, Moller A, Lumbiganon P, Petzold M, Hogan D, et al. Global, regional and national estimates of levels of preterm birth in 2014: a systematic review and modelling analysis. Lancet Glob Health. 2019;7:e37–46.

2. Liu L, Oza S, Hogan D, Perin J, Rudan I, Lawn J, et al. Global, regional, and national causes of child mortality in 2000-13, with projects to inform post-2015 priorities: an updated systematic analysis. Lancet. 2015;385.

3. Blencowe H, Cousens S, Chou D, Oestergaard M, Say L, Moller A, et al. Born too soon: the global epidemiology of 15 million preterm births. Reprod Health. 2013;10:S2.

4. Dbstet A. WHO: recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Acta Obstet Gynecol Scand. 1977;56:247–53.

5. World Health Organization: International Classification of Diseases 10th revision (ICD-10). 2010. http://www.who.int/classifications/icd/ICD10Volume2_en_2010.pdf?ua=1 [Accessed May 2020].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3