Modeling behavioral patterns of family violence aggressors

Author:

Jolliffe Simpson Apriel D.ORCID,Joshi ChaitanyaORCID,Polaschek Devon L. L.ORCID

Abstract

Abstract Background setting The presumption that family violence will repeat and escalate is embedded in practices including risk assessment and case management. However, there is limited evidence that further episodes are inevitable, or that subsequent episodes will increase in severity. Therefore, we need to better understand temporal patterns in aggressor behavior to inform how risk is conceptualized in practice. Methods For a sample of 2115 family violence aggressors who came to police attention in Integrated Safety Response catchment areas in Aotearoa New Zealand, we collected information New Zealand Police routinely recorded about reported harm between 2018 and 2020. We used a hidden Markov model to estimate the latent (i.e., unmeasurable) states behind the information reported to police, and modeled aggressors’ movement between those states over time. Results We identified three latent states. The first contained low or no reported harm, the second contained low probabilities of reported harm, and the third involved a high probability of reported verbal abuse and a moderate probability of reported physical violence. We identified four pathways through the latent states over the two-year follow-up period, which we called No reported harm, High reported harm, Low reported harm, and De-escalation. Conclusions The findings add to the body of research indicating that family violence aggressors do not inevitably repeat or escalate their harmful behavior, and that a small subset of cases account for a large proportion of reported harm. This study demonstrates how information that police routinely collect can be used to estimate aggressors’ latent behavioral states and model pathways communicating the probability that they will continue to come to police attention for family violence, contributing to improved risk assessment and practice.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3