Text mining domestic violence police narratives to identify behaviours linked to coercive control

Author:

Karystianis GeorgeORCID,Chowdhury Nabila,Sheridan Lorraine,Reutens Sharon,Wade Sunny,Allnutt Stephen,Kim Min-Taec,Poynton Suzanne,Butler Tony

Abstract

Abstract Background and setting Domestic and family violence (DFV) is a significant societal problem that predominantly affects women and children. One behaviour that has been linked to DFV perpetration is coercive control. While various definitions have been proposed, it involves “acts of assault, threats, humiliation and intimidation or other abuse that is used to harm, punish, or frighten a victim” ranging from emotional to social and financial abuse. One potentially rich source of information on coercive control are police reports. In this paper we determine whether it is possible to automatically identify behaviours linked to coercive control from DFV police reports and present the prevalence of such behaviours by age and sex. Methods We modified an existing rule-based text mining method to identify 48 coercive control related behaviours from 406,196 DFV reports involving a single person of interest (POI) (i.e., an individual suspected or charged with a DFV offence) against a single victim from NSW Police Force records between 2009 and 2020. Results 223,778 (54.6%) DFV events had at least one identifiable coercive control behaviour with the most common behaviour being verbal abuse (38.9%) followed by property damage (30.0%). Financial (3.2%) and social abuse (0.4%) were the least common behaviours linked to coercive control. No major differences were found in the proportion of DFV events between male and female POIs or victims. The oldest POI group (≥ 65 years) had the largest proportion for behaviours related to verbal abuse (38.0%) while the youngest POI group reported the highest proportion of DFV involving property damage (45.5%). The youngest victim group (< 18 years old) had the highest proportion of DFV events involving verbal abuse (37.3%) while victims between 18 and 24 years old reported the most harassment through phone calls and text messages (3.1% and 2.4% respectively); double that of those in the oldest (≥ 65 years) victim group (1.4% and 0.7% respectively). Conclusions Police data capture a wide variety of behaviours linked to coercive control, offering insights across the age spectrum and sex. Text mining can be used to retrieve such information. However, social and financial abuse were not commonly recorded emphasising the need to improve police training to encourage inquiring about such behaviours when attending DFV events.

Publisher

Springer Science and Business Media LLC

Reference64 articles.

1. Abbe, A., Grouin, C., Zweigenbaum, P., & Falissard, B. (2016). Text mining applications in psychiatry: A systematic literature review. International Journal of Methods in Psychiatric Research, 25(2), 86–100.

2. Acierno, R., Hernandez-Tejada, M., Muzzy, W., & Steve, K. (2009). The National Elder Mistreatment Study. National Institute of Justice.

3. Ananyan, S. (2004). Crime pattern analysis through text mining. AMCIS 2004 proceedings, 236.

4. Australian Bureau of Statistics (ABS) (2017). Personal safety, Australia, 2016. ABS cat. no. 4906.0. Canberra: ABS. https://www.abs.gov.au/ausstats/abs@.nsf/mf/4906.0.

5. Australian Institute of Health and Welfare (2018). Family, domestic and sexual violence in Australia. https://www.aihw.gov.au/reports/domestic-violence/family-domestic-sexual-violence-in-australia-2018/contents/summary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3