A systematic review on spatial crime forecasting

Author:

Kounadi Ourania,Ristea AlinaORCID,Araujo Adelson,Leitner Michael

Abstract

Abstract Background Predictive policing and crime analytics with a spatiotemporal focus get increasing attention among a variety of scientific communities and are already being implemented as effective policing tools. The goal of this paper is to provide an overview and evaluation of the state of the art in spatial crime forecasting focusing on study design and technical aspects. Methods We follow the PRISMA guidelines for reporting this systematic literature review and we analyse 32 papers from 2000 to 2018 that were selected from 786 papers that entered the screening phase and a total of 193 papers that went through the eligibility phase. The eligibility phase included several criteria that were grouped into: (a) the publication type, (b) relevance to research scope, and (c) study characteristics. Results The most predominant type of forecasting inference is the hotspots (i.e. binary classification) method. Traditional machine learning methods were mostly used, but also kernel density estimation based approaches, and less frequently point process and deep learning approaches. The top measures of evaluation performance are the Prediction Accuracy, followed by the Prediction Accuracy Index, and the F1-Score. Finally, the most common validation approach was the train-test split while other approaches include the cross-validation, the leave one out, and the rolling horizon. Limitations Current studies often lack a clear reporting of study experiments, feature engineering procedures, and are using inconsistent terminology to address similar problems. Conclusions There is a remarkable growth in spatial crime forecasting studies as a result of interdisciplinary technical work done by scholars of various backgrounds. These studies address the societal need to understand and combat crime as well as the law enforcement interest in almost real-time prediction. Implications Although we identified several opportunities and strengths there are also some weaknesses and threats for which we provide suggestions. Future studies should not neglect the juxtaposition of (existing) algorithms, of which the number is constantly increasing (we enlisted 66). To allow comparison and reproducibility of studies we outline the need for a protocol or standardization of spatial forecasting approaches and suggest the reporting of a study’s key data items.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Law,Urban Studies,Cultural Studies,Safety Research

Reference75 articles.

1. Al Boni, M., & Gerber, M. S. (2016). Predicting crime with routine activity patterns inferred from social media. In IEEE International Conference on Systems, Man and Cybernetics (SMC), (pp. 1233–1238). https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7844410.

2. Anselin, L. (2005). Exploring spatial data with GeoDaTM: A workbook. Santa Barbara: Center for Spatially Integrated Social Science.

3. Araújo, A., Cacho, N., Bezerra, L., Vieira, C., & Borges, J. (2018). Towards a crime hotspot detection framework for patrol planning. In 2018 IEEE 20th International Conference on High Performance Computing and Communications; IEEE 16th International Conference on Smart City; IEEE 4th International Conference on Data Science and Systems (HPCC/SmartCity/DSS), (pp. 1256–1263). https://doi.org/10.1109/HPCC/SmartCity/DSS.2018.00211.

4. Araujo, A. J., Cacho, N., Thome, A. C., Medeiros, A., & Borges, J. (2017). A predictive policing application to support patrol planning in smart cities. In International Smart Cities Conference (ISC2). https://www.researchgate.net/profile/Adelson_Araujo2/publication/321236214_A_predictive_policing_application_to_support_patrol_planning_in_smart_cities/links/5c068339299bf169ae316a6f/A-predictive-policing-application-to-support-patrol-planning-in-smart-ci.

5. Bernasco, W., & Elffers, H. (2010). Statistical analysis of spatial crime data. In A. R. Piquero & D. Weisburd (Eds.), Handbook of quantitative criminology (pp. 699–724). New York: Springer. https://doi.org/10.1007/978-0-387-77650-7_33.

Cited by 58 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3