Effectiveness of biostimulation through nutrient content on the bioremediation of phenanthrene contaminated soil

Author:

Kalantary Roshanak Rezaei,Mohseni-Bandpi Anoushiravan,Esrafili Ali,Nasseri Simin,Ashmagh Fatemeh Rashid,Jorfi Sahand,Ja’fari Mahsa

Abstract

Abstract Bioremediation has shown its applicability for removal of polycyclic aromatic hydrocarbons (PAHs) from soil and sediments. In the present study, the effect of biostimulation on phenanthrene removal from contaminated soil via adding macro and/or micronutrients and trace elements was investigated. For these purposes three macro nutrients (as N, P and K), eight micronutrients (as Mg, S, Fe, Cl, Zn, Mn, Cu and Na) and four trace elements (as B, Mo, Co and Ni) in 11 mineral salts (MS) as variables were used. Placket-Burman statistical design was used to evaluate significance of variables (MS) in two levels of high and low. A consortium of adapted microorganisms with PAHs was used for inoculation to the soil slurry which was spiked with phenanthrene in concentration of 500 mg/kg soil. The optimal reduction resulted when a high level of macro nutrient in the range of 67-87% and low level of micro nutrient in the range of 12-32% were used with the nitrogen as the dominant macronutrient. The Pareto chart showed that NH4NO3 was the most effective variable in this experiment. The effect of elements on phenanthrene biodegradation showed following sequence as N > K > P > Cl > Na > Mg. Effectiveness of the other elements in all runs was less than 1%. The type and concentration of nutrient can play an important role in biodegradation of phenanthrene. Biostimulation with suitable combination of nutrient can enhance bioremediation of PAHs contaminated soils.

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Applied Microbiology and Biotechnology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3