Author:
Friembichler Susanne,Coppens Paul,Säre Heli,Moens Yves
Abstract
Abstract
Background
Workplace contamination by the use of volatile anesthetic agents should be kept to a minimum if a potential health hazard is to be minimised. Mask induction of animals is a common procedure. The present study investigates the efficiency of a novel scavenging double mask in reducing waste gas concentrations in the breathing zone of the anesthetist performing this procedure.
Methods
Twelve beagle dogs (ASA I) undergoing general anesthesia for a dental procedure were intravenously premedicated with medetomidine and butorphanol (10 μg/kg and 0.2 mg/kg). Anesthesia was induced via a custom-made scavenging mask using isoflurane in oxygen. In six dogs (group S), scavenging from the mask was performed whereas in six other dogs (group NS) the scavenging function was disabled. Isoflurane concentration was continuously measured with photoacoustic spectroscopy at the level of the shoulder of the anesthetist before and during mask induction and additionally during intubation. Statistical analysis was performed with a Student t- test and a Mann-Whitney U test (p < 0.05 for significance).
Results
The mean isoflurane concentration during baseline (premedication) was 1.8 ± 0.8 ppm and 2.3 ± 0.6 ppm in group S and NS respectively. This increased during mask induction to 2.0 ± 0.8 ppm and 11.2 ± 6.0 ppm respectively (p < 0.01). The maximum isoflurane concentration ranged from 0.7 ppm to 2.8 ppm and from from 8.3 ppm to 43.7 ppm in group S and NS respectively.
Conclusion
This double mask can be used to induce inhalation anesthesia in dogs. Scavenging from the mask significantly decreases the amount of waste anaesthetic gas concentrations in the breathing zone of the anesthetist. Therefore, such a system can be recommended whenever induction or maintenance of general anesthesia by mask is considered.
Publisher
Springer Science and Business Media LLC
Subject
General Veterinary,General Medicine
Reference16 articles.
1. Hoerauf KH, Wiesner G, Schroegendorfer KF, Jobst BP, Spacek A, Harth A, Sator-Katzenschlager S, Rudiger HW: Waste anaesthetic gases induce sister chromatid exchanges in lymphocytes of operating room personnel. Br J Anaesth. 1999, 82: 764-766.
2. Lucchini R, Placidi D, Toffoletto F, Alessio L: Neurotoxicity in operating room personnel working with gaseous and nongaseous anesthesia. International Archives of Occupational and Environmental Health. 1996, 68: 188-192. 10.1007/BF00381630.
3. Nilsson R, Björdal C, Andersson M, Björdal J, Nyberg A, Welin B, Willman A: Health risks and occupational exposure to volatile anaesthetics - a review with a systemic approach. Journal of Clinical Nursing. 2005, 14: 173-186. 10.1111/j.1365-2702.2004.01032.x.
4. Burm AGL: Occupational hazards of inhalation anaesthetics. Best Practice & Research: Clinical Anaesthesiology 17. 2003, Amsterdam, Elsevier Ltd, 147-161. 10.1053/bean.2003.0271.
5. Barker JP, Abdelatti MO: Anaesthetic pollution:potential sources, their identification and control. Anaesthesia. 1997, 52: 1077-1083. 10.1111/j.1365-2044.1007.224-az0359.x.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献