CFDSD: a Communication Framework for Distributed Software Development

Author:

L’Erario AlexandreORCID,Gonçalves José Antônio,Fabri José Augusto,Pagotto Tiago,Cunha Palácios Rodrigo Henrique

Abstract

AbstractDue to geographical and/or temporal dispersion, communication between teams in distributed software projects is a critical factor for success. Notably, distributed teams suffer adverse physical and temporal dispersion effects during an information exchange. To mitigate problems arising from interactions, it is important to understand the communication structure of teams during distributed projects. The objective of this work is to present the Communication Framework for Distributed Software Development. This framework groups a set of distributed projects communication concepts and enables a unified view of all stakeholders’ intercommunications that use many interaction technologies. The goal of this framework is to portray the dynamics of the interaction between distributed teams in a multi-tier structure, and each tier approaches a single function in the intercommunication process. We analyzed all interactions from distributed teams after developing an experimental IT Project, using the content analysis method to validate the Communication Framework for Distributed Software Development. The main contribution of this work is the framework specification, and the investigation, which has the potential to help mapping communication patterns in DSD. Moreover, this framework comprises interfaces for communication assessment and includes intercommunications from automated engineering tools as bots.

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Examining the Impact of Team Dynamics in Agile Project Management Success in Software Development: A Systematic Literature Review;2023 IEEE 12th International Conference on Intelligent Data Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS);2023-09-07

2. A Case Study of Software Project Replacement: A Time Series Analysis;International Journal of Software Engineering and Knowledge Engineering;2023-06-30

3. Implications of Onshore Development on Global Software Engineering;Computers, Materials & Continua;2023

4. Complexity Estimation for Distributed Software Development Using SRS;IOP Conference Series: Materials Science and Engineering;2021-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3