Robust Cardinality: a novel approach for cardinality prediction in SQL queries

Author:

B. S. Praciano Francisco D.ORCID,Amora Paulo R. P.,Abreu Italo C.,Pereira Francisco L. F.,Machado Javam C.

Abstract

Abstract Background Database Management Systems (DBMSs) use declarative language to execute queries to stored data. The DBMS defines how data will be processed and ultimately retrieved. Therefore, it must choose the best option from the different possibilities based on an estimation process. The optimization process uses estimated cardinalities to make optimization decisions, such as choosing predicate order. Methods In this paper, we propose Robust Cardinality, an approach to calculate cardinality estimates of query operations to guide the execution engine of the DBMSs to choose the best possible form or at least avoid the worst one. By using machine learning, instead of the current histogram heuristics, it is possible to improve these estimates; hence, leading to more efficient query execution. Results We perform experimental tests using PostgreSQL, comparing both estimators and a modern technique proposed in the literature. With Robust Cardinality, a lower estimation error of a batch of queries was obtained and PostgreSQL executed these queries more efficiently than when using the default estimator. We observed a 3% reduction in execution time after reducing 4 times the query estimation error. Conclusions From the results, it is possible to conclude that this new approach results in improvements in query processing in DBMSs, especially in the generation of cardinality estimates.

Funder

Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior

Publisher

Springer Science and Business Media LLC

Subject

General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3