Upstrapping to determine futility: predicting future outcomes nonparametrically from past data

Author:

Wild Jessica L.ORCID,Ginde Adit A.,Lindsell Christopher J.,Kaizer Alexander M.

Abstract

Abstract Background Clinical trials often involve some form of interim monitoring to determine futility before planned trial completion. While many options for interim monitoring exist (e.g., alpha-spending, conditional power), nonparametric based interim monitoring methods are also needed to account for more complex trial designs and analyses. The upstrap is one recently proposed nonparametric method that may be applied for interim monitoring. Methods Upstrapping is motivated by the case resampling bootstrap and involves repeatedly sampling with replacement from the interim data to simulate thousands of fully enrolled trials. The p-value is calculated for each upstrapped trial and the proportion of upstrapped trials for which the p-value criteria are met is compared with a pre-specified decision threshold. To evaluate the potential utility for upstrapping as a form of interim futility monitoring, we conducted a simulation study considering different sample sizes with several different proposed calibration strategies for the upstrap. We first compared trial rejection rates across a selection of threshold combinations to validate the upstrapping method. Then, we applied upstrapping methods to simulated clinical trial data, directly comparing their performance with more traditional alpha-spending and conditional power interim monitoring methods for futility. Results The method validation demonstrated that upstrapping is much more likely to find evidence of futility in the null scenario than the alternative across a variety of simulations settings. Our three proposed approaches for calibration of the upstrap had different strengths depending on the stopping rules used. Compared to O’Brien-Fleming group sequential methods, upstrapped approaches had type I error rates that differed by at most 1.7% and expected sample size was 2–22% lower in the null scenario, while in the alternative scenario power fluctuated between 15.7% lower and 0.2% higher and expected sample size was 0–15% lower. Conclusions In this proof-of-concept simulation study, we evaluated the potential for upstrapping as a resampling-based method for futility monitoring in clinical trials. The trade-offs in expected sample size, power, and type I error rate control indicate that the upstrap can be calibrated to implement futility monitoring with varying degrees of aggressiveness and that performance similarities can be identified relative to considered alpha-spending and conditional power futility monitoring methods.

Funder

U.S. Department of Defense

National Heart, Lung, and Blood Institute

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3