Optimizing a Bayesian hierarchical adaptive platform trial design for stroke patients

Author:

Gao GuangyiORCID,Gajewski Byron J.,Wick Jo,Beall Jonathan,Saver Jeffrey L.,Meinzer Caitlyn,Derdeyn Colin,Fiorella David,Jovin Tudor,Khatri Pooja,Mistry Eva,Mocco J.,Nogueira Raul,Siddiqui Adnan,

Abstract

Abstract Background Platform trials are well-known for their ability to investigate multiple arms on heterogeneous patient populations and their flexibility to add/drop treatment arms due to efficacy/lack of efficacy. Because of their complexity, it is important to develop highly optimized, transparent, and rigorous designs that are cost-efficient, offer high statistical power, maximize patient benefit, and are robust to changes over time. Methods To address these needs, we present a Bayesian platform trial design based on a beta-binomial model for binary outcomes that uses three key strategies: (1) hierarchical modeling of subgroups within treatment arms that allows for borrowing of information across subgroups, (2) utilization of response-adaptive randomization (RAR) schemes that seek a tradeoff between statistical power and patient benefit, and (3) adjustment for potential drift over time. Motivated by a proposed clinical trial that aims to find the appropriate treatment for different subgroup populations of ischemic stroke patients, extensive simulation studies were performed to validate the approach, compare different allocation rules, and study the model operating characteristics. Results and conclusions Our proposed approach achieved high statistical power and good patient benefit and was also robust against population drift over time. Our design provided a good balance between the strengths of both the traditional RAR scheme and fixed 1:1 allocation and may be a promising choice for dichotomous outcomes trials investigating multiple subgroups.

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Medicine (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3