IMI2-PainCare-BioPain-RCT3: a randomized, double-blind, placebo-controlled, crossover, multi-center trial in healthy subjects to investigate the effects of lacosamide, pregabalin, and tapentadol on biomarkers of pain processing observed by electroencephalography (EEG)

Author:

Mouraux AndréORCID,Bloms-Funke Petra,Boesl Irmgard,Caspani Ombretta,Chapman Sonya C.,Di Stefano Giulia,Finnerup Nanna Brix,Garcia-Larrea Luis,Goetz Marcus,Kostenko Anna,Pelz Bernhard,Pogatzki-Zahn Esther,Schubart Karin,Stouffs Alexandre,Truini Andrea,Tracey Irene,Troconiz Iñaki F.,Van Niel Johannes,Vela Jose Miguel,Vincent Katy,Vollert Jan,Wanigasekera Vishvarani,Wittayer Matthias,Phillips Keith G.,Treede Rolf-Detlef

Abstract

Abstract Background IMI2-PainCare-BioPain-RCT3 is one of four similarly designed clinical studies aiming at profiling a set of functional biomarkers of drug effects on the nociceptive system that could serve to accelerate the future development of analgesics, by providing a quantitative understanding between drug exposure and effects of the drug on nociceptive signal processing in human volunteers. IMI2-PainCare-BioPain-RCT3 will focus on biomarkers derived from non-invasive electroencephalographic (EEG) measures of brain activity. Methods This is a multisite single-dose, double-blind, randomized, placebo-controlled, 4-period, 4-way crossover, pharmacodynamic (PD) and pharmacokinetic (PK) study in healthy subjects. Biomarkers derived from scalp EEG measurements (laser-evoked brain potentials [LEPs], pinprick-evoked brain potentials [PEPs], resting EEG) will be obtained before and three times after administration of three medications known to act on the nociceptive system (lacosamide, pregabalin, tapentadol) and placebo, given as a single oral dose in separate study periods. Medication effects will be assessed concurrently in a non-sensitized normal condition and a clinically relevant hyperalgesic condition (high-frequency electrical stimulation of the skin). Patient-reported outcomes will also be collected. A sequentially rejective multiple testing approach will be used with overall alpha error of the primary analysis split between LEP and PEP under tapentadol. Remaining treatment arm effects on LEP or PEP or effects on EEG are key secondary confirmatory analyses. Complex statistical analyses and PK-PD modeling are exploratory. Discussion LEPs and PEPs are brain responses related to the selective activation of thermonociceptors and mechanonociceptors. Their amplitudes are dependent on the responsiveness of these nociceptors and the state of the pathways relaying nociceptive input at the level of the spinal cord and brain. The magnitude of resting EEG oscillations is sensitive to changes in brain network function, and some modulations of oscillation magnitude can relate to perceived pain intensity, variations in vigilance, and attentional states. These oscillations can also be affected by analgesic drugs acting on the central nervous system. For these reasons, IMI2-PainCare-BioPain-RCT3 hypothesizes that EEG-derived measures can serve as biomarkers of target engagement of analgesic drugs for future Phase 1 clinical trials. Phase 2 and 3 clinical trials could also benefit from these tools for patient stratification. Trial registration This trial was registered 25/06/2019 in EudraCT (2019%2D%2D001204-37).

Funder

Innovative Medicines Initiative

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3