Author:
Budge James,Carrell Tom,Yaqub Medeah,Wafa Hatem,Waltham Matt,Pilecka Izabela,Kelly Joanna,Murphy Caroline,Palmer Stephen,Wang Yanzhong,Clough Rachel E
Abstract
Abstract
Background
Endovascular repair of aortic aneurysmal disease is established due to perceived advantages in patient survival, reduced postoperative complications, and shorter hospital lengths of stay. High spatial and contrast resolution 3D CT angiography images are used to plan the procedures and inform device selection and manufacture, but in standard care, the surgery is performed using image-guidance from 2D X-ray fluoroscopy with injection of nephrotoxic contrast material to visualise the blood vessels. This study aims to assess the benefit to patients, practitioners, and the health service of a novel image fusion medical device (Cydar EV), which allows this high-resolution 3D information to be available to operators at the time of surgery.
Methods
The trial is a multi-centre, open label, two-armed randomised controlled clinical trial of 340 patient, randomised 1:1 to either standard treatment in endovascular aneurysm repair or treatment using Cydar EV, a CE-marked medical device comprising of cloud computing, augmented intelligence, and computer vision. The primary outcome is procedural time, with secondary outcomes of procedural efficiency, technical effectiveness, patient outcomes, and cost-effectiveness. Patients with a clinical diagnosis of AAA or TAAA suitable for endovascular repair and able to provide written informed consent will be invited to participate.
Discussion
This trial is the first randomised controlled trial evaluating advanced image fusion technology in endovascular aortic surgery and is well placed to evaluate the effect of this technology on patient outcomes and cost to the NHS.
Trial registration
ISRCTN13832085. Dec. 3, 2021
Funder
Invention for Innovation Programme
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献