Overlap between adverse events (AEs) and serious adverse events (SAEs): a case study of a phase III cancer clinical trial

Author:

James Elizabeth C.ORCID,Dunn DavidORCID,Cook Adrian D.ORCID,Clamp Andrew R.ORCID,Sydes Matthew R.ORCID

Abstract

Abstract Background Safety data is required to be collected in all clinical trials and can be separated into two types of data, adverse events and serious adverse events. Often, these types of safety data are collected as two discrete data sets, where adverse events that also meet the criteria for seriousness should be reported in both datasets. Safety analyses are often conducted using only the adverse event dataset, which should feature all safety events reported. We investigated whether the reporting of safety in both datasets was systematically followed and explored the impact of this on safety analyses in ICON8, an ovarian cancer clinical trial. Methods Text searches of serious adverse event data identified events that could potentially match the data reported in the adverse event dataset (looking at pre-specified AE terms only). These serious adverse events were then mapped to adverse event data according to predefined criteria: (a) event term matches, (b) date of onset and date of assessment within 30 days of each other, (c) date of assessment lies between date of onset and date of resolution and (d) events confirmed to occur in the same chemotherapy cycle. A combined dataset of all unique safety events (whether originally reported in the adverse event or serious adverse event dataset) was created and safety analyses re-performed. Results 51,019 adverse events were reported in ICON8, of which 42,410 were included in the mapping exercise. One thousand five hundred six serious adverse event elements were reported, of which 668 were included in the mapping exercise. Sixty-one percent of serious adverse event elements was matched to an already-reported adverse event. Supplementing these additional safety events and re-performing safety analyses increased the proportion of patients with at least one grade 3 or worse safety events in all arms from 42 to 47% in the control arm and 61 to 65% and 52 to 59% in the research arms. The difference in proportions of grade 3 or worse event in the research arms compared to the control arm changed by 18% (95% confidence interval [CI] 12 to 24%) and 12% (95% CI 6 to 18%), respectively. Conclusions There was low agreement in mapping serious adverse events to already reported adverse events, with nearly 40% of serious adverse events included in the mapping exercise not mapped to an already reported adverse event. Any analyses of safety data that use only adverse event datasets or do not clearly account for serious adverse event data will likely be missing important safety information. Reporting standards should make clear which datasets were used for analyses.

Funder

Cancer Research UK

Medical Research Council

Publisher

Springer Science and Business Media LLC

Subject

Pharmacology (medical),Medicine (miscellaneous)

Reference9 articles.

1. International Council for Harmonisation. ICH harmonised tripartite guideline: clinical safety dta management: definitions and standards for expedited reported E2A. 1994. https://database.ich.org/sites/default/files/E2A_Guideline.pdf. Accessed 15 Sept 2020.

2. Trotti A, Colevas AD, Setser A, Basch E. Patient-reported outcomes and the evolution of adverse event reporting in oncology. J Clin Oncol. 2007;25(32):5121–7.

3. National Institute of Health. Common Terminology Criteria for Adverse Events (CTCAE) version 4.03). 2010. https://evs.nci.nih.gov/ftp1/CTCAE/CTCAE_4.03/CTCAE_4.03_2010-06-14_QuickReference_5x7.pdf. Accessed 15 Sept 2020.

4. Clamp AR, James EC, McNeish IA, Dean A, Kim JW, O'Donnell DM, et al. Weekly dose-dense chemotherapy in first-line epithelial ovarian, fallopian tube, or primary peritoneal carcinoma treatment (ICON8): primary progression free survival analysis results from a GCIG phase 3 randomised controlled trial. Lancet. 2019;394(10214):2084–95.

5. Council for International Organisations of Medical Sciences. Linking the CIOMS I form to the ICH E2B format: Suspect Adverse Reaction Report. 1996. https://cioms.ch/wp-content/uploads/2019/11/Fillable-Form_CIOMS-to-E2B.pdf. Accessed 15 Sept 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3