Abstract
AbstractConcrete industry is challenged by sustainability and technical concerns. Sustainability includes minimization of raw material usage, energy consumption, and emission of greenhouse gases, while technical concerns comprise the enhancement of mechanical properties and durability such as compressive strength, resistance to chloride, acids, and elevated temperatures. Therefore, recycling of industrial waste in manufacturing of green concrete has become a robust viable alternative to disposal, due to the limited natural resources and raw materials which contribute to sustainable construction. Consequently, this research aims to develop an approach using a multicriteria decision-making algorithm based on Analytical Hierarchy Process (AHP), to select the most suitable industrial waste to achieve the desired green concrete properties. The research starts by determining the alternatives including 18 industrial wastes, and the criteria including 14 properties of concrete. After that, an experimental database for the influence of the alternatives on the criteria is established based on the literature. Then, an algorithm is developed using a python script to analyze the influence of incorporating each of the industrial waste alternative on both the mechanical and sustainable properties of concrete. Subsequently, the efficiency of the proposed algorithm is validated using three case studies that present different circumstances of concrete specifications. Based on the proposed approach, the decision-maker can assign the appropriate residual waste to be incorporated into the concrete mix according to its application in a user-friendly manner. Such approach can support both sustainable use of waste materials and enhancement of concrete properties.
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Reference99 articles.
1. Akchurin, T. K., Tukhareli, A. V., & Cherednichenko, T. F. (2016). Effective concrete modified by complex additive based on waste products of construction acrylic paints. 2nd International Conference on Industrial Engineering (Icie-2016), 150, 1468–1473. https://doi.org/10.1016/j.proeng.2016.07.083
2. Al-Adili, A., Al-Ameer, O. A., & Raheem, E. (2015). Investigation of incorporation of two waste admixtures effect on some properties of concrete. International Conference on Technologies and Materials for Renewable Energy, Environment and Sustainability—TMREES, 15(74), 652–662. https://doi.org/10.1016/j.egypro.2015.07.801
3. Al-Ansary, M. S., El-Haggar, S. M., & Taha, M. A. (2004). Sustainable guidelines for managing demolition waste in Egypt. Paper presented at the proceedings of the international RILEM conference on the use of recycled materials in building and structures, Barcelona.
4. Alnahhal, A. M., Alengaram, U. J., Yusoff, S., Singh, R., Radwan, M. K. H., & Deboucha, W. (2021). Synthesis of sustainable lightweight foamed concrete using palm oil fuel ash as a cement replacement material. Journal of Building Engineering, 35, 102047. https://doi.org/10.1016/j.jobe.2020.102047
5. Alqarni, A. S., Albidah, A. S., Alaskar, A. M., & Abadel, A. A. (2020). The effect of coarse aggregate characteristics on the shear behavior of reinforced concrete slender beams. Construction and Building Materials, 264, 120189.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献