Flexural Behavior Evaluation for Seismic, Durability and Structure Performance Improvement of Aged Bridge According to Reinforcement Methods

Author:

Kim Tae-KyunORCID,Park Jong-Sup

Abstract

AbstractAmong infrastructure, concrete bridges are the most exposed to various environmental effects. Structural degradation occurs due to natural and artificial influences shortening the lifespan of the structure. Therefore, bridges need to be reinforced over time. The structures used in this study are re-formed using aged bridge floor decks that have been used for 50 years, approximately. The fiber-reinforced polymer (FRP) adhesion method, using sheets and plate forms, was selected among various reinforcement methods to investigate the performance of reinforced structures. We have tested various reinforcement scenarios including one and two layers FRP sheets and FRP plates. The mechanical properties of the reinforced structures were evaluated experimentally through tensile strength and flexural test experiments. In contrast to most available literature focused on model-based studies, our present work represents an experimental test validation of structural reinforcement on an actual bridge. Our results indicate that fiber-based reinforcement in sheet form exhibits higher performances of the reinforced structure compared to reinforcement using the plate form. This study is intended to provide sufficient data for reinforcing bridge floors that could be used for reference at future construction sites.

Funder

Ministry of Science and ICT, South Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3