Abstract
AbstractScholars have studied the impact of rubber particles (RPs) on the performance of the concrete and the research topics have covered all the mechanical properties and durability of normal concrete (NC). Recently, scholars have turned their research interest to the structural properties of concrete. However, there are few experimental studies on the bonding properties of RC to NC. The RPs have both positive and negative impacts on the bond performance. On one hand, RPs can reduce the shrinkage of concrete, resulting in reduced shear stress and tensile stress near the bonding boundary. On the other hand, RPs cause a reduction in the overall strength of concrete, resulting in the poor mechanical performance of the interface transition layer between the two concrete. The test results of this study show that the bonding splitting tensile strength between freshly mixed RC to aged NC first increases and then decreases with the rise of the RPs content in the RC, and the bonding splitting tensile strength reaches the peak when the RPs content is 10%. The bonding splitting tensile strength between the NC and the RC mixed with 3–5 mm RP is higher than that between the NC and the RC mixed with 1–3 mm RPs. When mixed with modified RPs, the bonding splitting tensile strength between the RC and the NC is improved. Applying an interfacial agent (a cement slurry or an epoxy) on the old concrete bonding surface can significantly improve the bonding splitting tensile strength. The results of non-repeated two-way ANOVA show that the content of the RPs and the type of the interfacial agent have significant effects on the bond splitting tensile strength, while the size and modification of the RPs have no significant effects on the bond splitting tensile strength.
Funder
National Natural Science Foundation of China
National Key R&D Program of China
Doctoral Candidate Innavation Fund of the North China University of Water Resources and Electric Power
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Reference35 articles.
1. Austin, S., Robins, P., & Pan, Y. (1995). Tensile bond testing of concrete repairs. Materials and Structures, 28, 249–259.
2. Bijen, J., & Salet, T. (1994). Adherence of young concrete to old concrete-Development of tools for engineering. Adherence of young on Old Concrete,edited by F. H. Wittmann.
3. Chen, P.-W., Fu, X., & Chung, D. D. L. (1995). Improving the bonding between old new concrete by adding carbon fibers to the new concrete. Cement and Concrete Research, 25, 491–496.
4. Climaco, J. C. T. S., & Regan, P. E. (2001). Evaluation of bond strength between old and new concrete in structural repairs. Magazine of Concrete Research, 53, 377–390.
5. Eldin, N. N., & Senouci, A. B. (1993). Observations on rubberized concrete behavior. Cement Concrere and Aggregates, 15, 74–84.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献