Performance of Self-healing Cementitious Mortar with PVA Fiber and SAP

Author:

Kwon Sukmin,Lee Sugyu,Kang Hyunuk,Kim Min Kyoung,Her Sungwun,Bae Sungchul,Kim Dong Joo,Moon JuhyukORCID

Abstract

AbstractAlthough concrete materials generally exhibit outstanding mechanical properties, it is susceptible against crack formation. It has been reported that narrow cracks (≤ 150 µm) could be naturally sealed in the cement matrix by externally supplied water-induced hydration. However, the crack width of larger than 150 µm is difficult to be sealed without using additional self-healing admixture. In this study, the self-healing cementitious mortar was successfully developed by using a combination of polyvinyl alcohol (PVA) fiber and superabsorbent polymer (SAP), aiming to heal the wide cracks. Although the mechanical properties were slightly reduced, it shows outstanding self-healing performance by using the dual admixtures. A self-healing rate of 60% was observed in the control sample with an initial crack width of 300 µm, while a self-healing rate of nearly 100% was confirmed with suitable SAP and PVA. In addition, it was confirmed that lower hydration degree of self-healing mortar in early stage contributes to the enhanced self-healing performance of developed composite system by internally supplied water from SAP.

Funder

Land and Housing Corporation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3