Structural Behaviour of Polystyrene Foam Lightweight Concrete Beams Strengthened with FRP Laminates

Author:

Montaser Wael M.ORCID,Shaaban Ibrahim G.,Zaher Amr H.,Khan Sadaqat U.,Sayed Mustafa N.

Abstract

AbstractLightweight concrete (LWC) is one of the most important building materials nowadays. Many research studies were focused on LWC produced using lightweight aggregates. However, limited work was cited for LWC produced using polystyrene beads. In this study, LWC beams strengthened with carbon fibre reinforced polymer (CFRP) and glass fibre reinforced polymer (GFRP) were experimentally tested to investigate the improvement in their flexural and shear behaviours. LWC in this investigation was achieved by partial replacement of normal aggregate by polystyrene beads and resulted in approximately 30% less weight compared to Normal weight concrete. Fourteen Reinforced Concrete (RC) LWC beams of 100 mm by 300 mm cross section having an overall length of 3250 mm were tested under four-point bending. These beams were designed, detailed, and tested to obtain flexural and shear mode of failure. These beams were divided into two groups based on the intended failure mode. In each group, six beams were strengthened using CFRP and GFRP laminates, while the remaining one beam was used as control. The tested parameters were the type of FRP, the width of the laminates used in shear strengthening, and the number of layers used in flexural strengthening. It was found that strengthening of LWC beams using CFRP and GFRP layers resulted in increasing the loading capacity and decreasing deflection as compared to control. The strengthening with CFRP and GFRP is also suitable in reducing the crack width and crack propagation which is more significant in LWC beams. The experimental results were also compared with the expressions in codes for forecasting the strength of LWC beams and it was that these expressions are compatible with the experimental results.

Funder

EKB

6 October University

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3