Flexural Performance of Steel Reinforced ECC-Concrete Composite Beams Subjected to Freeze–Thaw Cycles

Author:

Ge WenjieORCID,Ashour Ashraf F.,Lu Weigang,Cao Dafu

Abstract

AbstractExperimental and theoretical investigations on the flexural performance of steel reinforced ECC-concrete composite beams subjected to freeze–thaw cycles are presented in this paper. Four groups of reinforced composite beams with different ECC height replacement ratios subject to 0, 50, 100 and 150 cycles of freeze–thaw were physically tested to failure. Experimental results show that the bending capacity decreases with the increase of freeze–thaw cycles regardless of ECC height replacement ratios. However, the ultimate moment, stiffness and durability of ECC specimens and ECC-concrete composite specimens are greater than those of traditional concrete specimens, owing to the excellent tensile performance of ECC materials. With the increase of ECC height, the crack width and average crack spacing gradually decrease. According to materials’ constitutive models, compatibility and equilibrium conditions, three failure modes with two boundary failure conditions are proposed. Simplified formulas for the moment capacity are also developed. The results predicted by the simplified formulas show good agreement with the experimental moment capacity and failure modes. A parametric analysis is conducted to study the influence of strength and height of ECC, amount of reinforcement, concrete strength and cycles of freeze–thaw on moment capacity and curvature ductility of ECC-concrete composite beams.

Funder

National Natural Science Foundation of China

Postdoctoral Research Foundation of China

the Science and Technology Project of Jiangsu Construction System

Six Talent Peaks Project in Jiangsu Province

Yangzhou University Top-level Talents Support Project

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3